Penghilangan Kadar Klorine pada Precipitate Calcium Carbonate (PCC) dengan Proses Pencucian dan Filtrasi
DOI:
https://doi.org/10.31315/e.v20i3.9684Keywords:
precipitated calcium carbonate, pencucian, filtrasi, klorin, kristal PCCAbstract
Kualitas Precipitated Calcium Carbonate yang dapat digunakan di industri kertas dan cat harus bebas dari klorin, karena dapat menyebabkan korosi pada peralatan. Hasil penelitian skala pilot plant kapasitas 2 kg/jam, produk PCC masih mengandung klorin (0,73 s/d 2,02 %), sedangkan standar industri <0,001%. Penelitian ini bertujuan untuk menghilangkan kadar klorin dengan metoda pencucian dan filtrasi tanpa vacuum dan metode kedua pencucian dan filtrasi dengan vacuum filter. Proses pencucian menggunakan air PDAM, air hujan dan aquadest dengan rasio PCC dengan air pencucinya yaitu 1:1, 1:2, 1:3 dan 1:4. PCC yang dihasilkan dari pilot plant dengan dua jenis PCC yaitu PCC dengan konsentrasi pelarut NH4Cl 12,5 g/L dan 50 g/L. Hasil penelitian menunjukkan penggunaan air PDAM dapat menurunkan kadar klorin 0,0322% (NH4Cl 12,5 g/L) dan 0,0959% (NH4Cl 50 g/L) dengan metoda pencucian dan filtrasi tanpa vakum dengan rasio 1:4. Kadar klorin yang diperoleh pada metode pencucian dan filtrasi dengan vacuum filter kadar klorin menjadi 0,0203% (pelarut NH4Cl 12,5 g/L) dan 0,0364% (pelarut NH4Cl 50 g/L). Morfologi PCC dipengaruhi konsentrasi NH4Cl. Kristal kalsit untuk konsentrasi NH4Cl (12,5 g/L) dan kristal aragonit untuk konsentrasi NH4Cl 50 g/L. Ukuran partikel yang diperoleh PCC 0 - 16 µm.References
Abeywardena, M. R., Elkaduwe, R. K. W. H. M. K., Karunarathne, D. G. G. P., Pitawala, H. M. T. G. A., Rajapakse, R. M. G., Manipura, A., & Mantilaka, M. M. M. G. P. G. (2020). Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size. Advanced Powder Technology, 31(1), 269–278. https://doi.org/10.1016/j.apt.2019.10.018
Al, M., Reo, R., Si, S., Whiny, R., & Erliana, H. (2022). Otomasi Continuous Pilot Plant , Market Trial , dan Simulasi Skala Demo Plant Pemanfaatan CO2 Menjadi Precipitated Calcium Carbonate LAPORAN TAHAP III MARET 2022 Otomasi Continuous Pilot Plant , Market Trial , dan Simulasi Skala Demo Plant Pemanfaatan CO2.
Altiner, M., Top, S., & Kaymakoğlu, B. (2021). Ultrasonic-assisted production of precipitated calcium carbonate particles from desulfurization gypsum. Ultrasonics Sonochemistry, 72. https://doi.org/10.1016/j.ultsonch.2020.105421
Altiner, M., Top, S., Kaymakoǧlu, B., Seçkin, I. Y., & Vapur, H. (2019). Production of precipitated calcium carbonate particles from gypsum waste using venturi tubes as a carbonation zone. Journal of CO2 Utilization, 29(December 2018), 117–125. https://doi.org/10.1016/j.jcou.2018.12.004
Altiner, M., & Yildirim, M. (2017). Production of precipitated calcium carbonate particles with different morphologies from dolomite ore in the presence of various hydroxide additives. Physicochemical Problems of Mineral Processing, 53(1), 413–426. https://doi.org/10.5277/ppmp170133
Desmiarti, R., Sari, E., Firdaus, F., Desfitri, E., Amir, A., Salsabil, I., Rosadi, M., & Naldi, N. (2022). The Effect of Calcination Temperature on The Quality of Quicklime from Different Limestone Mines in West Sumatera, Indonesia. Journal of Applied Agricultural Science and Technology, 6(1), 41–48. https://doi.org/10.55043/jaast.v6i1.44
El-Sheikh, S. M., El-Sherbiny, S., Barhoum, A., & Deng, Y. (2013). Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 44–49. https://doi.org/10.1016/j.colsurfa.2013.01.020
F, M., M, A., & L, K. M. (2020). The effect of Ca ( OH ) 2 slurry concentration on precipitated CaCO 3 product The Effect of Ca ( OH ) 2 Slurry Concentration on Precipitated. 020017(December 2019).
Farrag, N. M., Bayoumi, R. A., & Mohamed, T. A. (2022). Factorial analysis of nano-precipitated calcium carbonate via a carbonation route using Solvay wastewater. Case Studies in Chemical and Environmental Engineering, 6(July), 100236. https://doi.org/10.1016/j.cscee.2022.100236
Huang, S. C., Naka, K., & Chujo, Y. (2007). A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. Langmuir, 23(24), 12086–12095. https://doi.org/10.1021/la701972n
Laukala, T., Kronlund, D., Heiskanen, I., & Backfolk, K. (2017). The effect of polyacrylic acid and reaction conditions on nanocluster formation of precipitated calcium carbonate on microcellulose. Cellulose, 24(7), 2813–2826. https://doi.org/10.1007/s10570-017-1296-8
Pusparizkita, Y. M., Schmahl, W. W., Ambarita, M., Kholid, H. N., Sadewa, A. Y., Ismail, R., Jamari, J., & Bayuseno, A. P. (2023). Mineralizing CO2 and producing polymorphic calcium carbonates from bitumen-rock asphalt manufacturing solid residues. Cleaner Engineering and Technology, 12(October 2022), 100602. https://doi.org/10.1016/j.clet.2023.100602
Sari, E., Desmiarti, R., Arief, S., Rosadi, Y., Naldi, N., & Hutagaol, H. A. (2022). International Journal of Applied Science and Engineering Synthesis of precipitated calcium carbonate with the addition of aloe vera extract under different reaction temperatures. 20(1), 1–7.
Sarkar, A., & Mahapatra, S. (2010). Synthesis of all crystalline phases of anhydrous calcium carbonate. Crystal Growth and Design, 10(5), 2129–2135. https://doi.org/10.1021/cg9012813
Shirsath, S. R., Sonawane, S. H., Saini, D. R., & Pandit, A. B. (2015). Continuous precipitation of calcium carbonate using sonochemical reactor. Ultrasonics Sonochemistry, 24, 132–139. https://doi.org/10.1016/j.ultsonch.2014.12.003
Song, X., Zhang, L., Cao, Y., Zhu, J., & Luo, X. (2020). Effect of pH and temperatures on the fast precipitation vaterite particle size and polymorph stability without additives by steamed ammonia liquid waste. Powder Technology, 374, 263–273. https://doi.org/10.1016/j.powtec.2020.07.029
Supelco. (2022). Material Safety Data Sheet Calcium Oxide. Material Safety Data Sheet, Kategori 3, 1–10.
Tamm, K., Kallas, J., Kuusik, R., & Uibu, M. (2017). Modelling Continuous Process for Precipitated Calcium Carbonate Production from Oil Shale Ash. Energy Procedia, 114(November 2016), 5409–5416. https://doi.org/10.1016/j.egypro.2017.03.1685
Teir, S., Auvinen, T., Said, A., Kotiranta, T., & Peltola, H. (2016). Performance of separation processes for precipitated calcium carbonate produced with an innovative method from steelmaking slag and carbon dioxide. In Frontiers in Energy Research (Vol. 4, Issue FEB). https://doi.org/10.3389/fenrg.2016.00006
Teir, S., Kotiranta, T., Pakarinen, J., & Mattila, H. P. (2016). Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag. Journal of CO2 Utilization, 14, 37–46. https://doi.org/10.1016/j.jcou.2016.02.004
Wu, J. L., Wang, C. Q., Zhuo, R. X., & Cheng, S. X. (2014). Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids and Surfaces B: Biointerfaces, 123, 498–505. https://doi.org/10.1016/j.colsurfb.2014.09.047
Yang, A., Huang, Z., Zhu, Y., Han, Y., & Tong, Z. (2021). Preparation of nano-sized calcium carbonate in solution mixing process. Journal of Crystal Growth, 571(29), 126247. https://doi.org/10.1016/j.jcrysgro.2021.126247
Zhang, Y., Qiao, L., Yan, H., Zizak, I., Zaslansky, P., Li, Y., Qi, L., & Ma, Y. (2020). Vaterite Microdisc Mesocrystals Exposing the (001) Facet Formed via Transformation from Proto-Vaterite Amorphous Calcium Carbonate. Crystal Growth and Design, 20(5), 3482–3492. https://doi.org/10.1021/acs.cgd.0c00259
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License(CC BY SA 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Eksergi allows authors retain the copyright and full publishing rights without restrictions.