Analisis Perubahan Volume Lahan Pasca Kegiatan Galian Berbasis UAV dengan Evaluasi DEMNAS sebagai Permukaan Awal

Authors

  • Anugerah Satria Pradana Budiyono Universitas Pembungunan Nasional "Veteran" Yogyakarta

DOI:

https://doi.org/10.31315/imagi.v5i2.14913

Keywords:

DTM, UAV, DEMNAS, CSF, Volume

Abstract

Permukaan bumi terus berubah akibat aktivitas alam dan manusia seperti penambangan, pembangunan, reklamasi, longsor, dan erosi. Perubahan ini meninggalkan jejak berupa material yang tergali, berpindah, atau tertimbun, sehingga perhitungan volume perubahan permukaan penting untuk menilai dampak lingkungan. Penelitian ini bertujuan menghasilkan model elevasi dan ortofoto berketelitian tinggi melalui integrasi metode GNSS statik dan fotogrametri udara berbasis Structure from Motion (SfM), serta mengevaluasi penggunaan DEMNAS sebagai acuan permukaan dasar dalam estimasi volume perubahan lahan. Empat titik kontrol tanah ditentukan dengan metode GNSS statik selama 1 jam (interval 1 Hz) dengan ketelitian rata-rata 8 mm (Northing), 10 mm (Easting), dan 3,7 mm (Elevasi). Titik-titik tersebut menjadi acuan pengukuran Ground Control Point (GCP) dan Independent Check Point (ICP). Foto udara diolah menggunakan Agisoft Metashape dengan algoritma Cloth Simulation Filtering (CSF) untuk pemisahan permukaan tanah. Hasilnya berupa ortofoto beresolusi 2,05 cm/pixel dengan ketelitian horizontal CE90 sebesar 0,027 m dan DTM beresolusi 3,39 cm/pixel dengan ketelitian vertikal LE90 sebesar 0,030 m. Estimasi volume pada area 3.670 m² memiliki ketelitian ±110,1 m³, sedangkan perbandingan DTM UAV terhadap DEMNAS menunjukkan selisih 13.355,72 m³ (ketelitian relatif 0,82%).

References

Abdullah, Q., Maune, D., Smith, D., & Heidemann, H. K. (2015). ASPRS positional accuracy standards for digital geospatial data. Photogramm. Eng. Remote Sens, 81, 1-26.

Ajayi, O. G., & Ajulo, J. (2021). Investigating the Applicability of Unmanned Aerial Vehicles (UAV) Photogrammetry for the Estimation of the Volume of Stockpiles. Quaestiones Geographicae, 40(1), 25–38. https://doi.org/10.2478/quageo-2021-0002

Aji, A. R. S., & Djurdjani, D.-. (2022). Perbandingan Volume Stockpile Batu Bara Hasil UAV Fotogrametri dan UAV Lidar. JGISE: Journal of Geospatial Information Science and Engineering, 5(2), 70. https://doi.org/10.22146/jgise.78295

Badan Informasi Geospasial (2014). Peraturan Kepala Badan Informasi Geospasial Nomor 15 Tahun 2014 Tentang Pedoman Teknis Ketelitian Peta Dasar. Cibinong: Badan Informasi Geospasial.

Cai, S., Zhao, X., Zhang, W., & Chen, Y. (2018). Applicability analysis of cloth simulation filtering algorithm for mobile LiDAR point cloud. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-3, 107–112. https://doi.org/10.5194/isprs-archives-XLII-3-107-2018

Carvajal, F., Agüera, F., & Pérez, M. (2012). Surveying a Landslide in a Road Embankment Using Unmanned Aerial Vehicle Photogrammetry. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/(September), 201–206. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-201-2011

Cheng, H., Yamamoto, H., Thoeni, K., & Wu, Y. (2017). An analytical solution for geotextile-wrapped soil based on insights from DEM analysis. Geotextiles and Geomembranes, 45(4), 361-376.

D’Oleire-Oltmanns, S., Marzolff, I., Peter, K. D., & Ries, J. B. (2012). Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 4(11), 3390–3416. https://doi.org/10.3390/rs4113390

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., & Abellán, A. (2016). Image-based surface reconstruction in geomorphometry-merits, limits and developments. Earth Surface Dynamics, 4(2), 359–389. https://doi.org/10.5194/esurf-4-359-2016

Musoffa, M. F., Sukmono, A., & Ulum, Z. (2021). Kajian Pemanfaatan Metode Fotogrametri Dengan UAV Low Cost Untuk Pekerjaan Cut And Fill Pada Pembangunan Bandara Dhoho Kabupaten Kediri. In Prosiding Forum Ilmiah Tahunan (FIT)-Ikatan Surveyor Indonesia (ISI) (Vol. 1, pp. 332-339). Departemen Teknik Geodesi, Fakultas Teknik, Universitas Diponegoro.

Gesch, D. B. (2014). An inventory of topographic surface changes: The value of multitemporal elevation data for change analysis and monitoring. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(4), 59–63. https://doi.org/10.5194/isprsarchives-XL-4-59-2014

Hawker, L., Bates, P., Neal, J., & Rougier, J. (2018). Perspectives on Digital Elevation Model (DEM) Simulation for Flood Modeling in the Absence of a High-Accuracy Open Access Global DEM. Frontiers in Earth Science, 6(December), 1–9. https://doi.org/10.3389/feart.2018.00233

Lama, A. R., Sai, S. S., & Mabrur, A. Y. (2018). Analisis Ketelitian Perhitungan Volume Galian Menggunakan Data Gridding Dan Tanpa Gridding Pada Pekerjaan Bendungan. Malang: Program Studi Teknik Geodesi Fakultas Teknik, Institut Teknologi Nasional Malang.

Lee, K., & Lee, W. H. (2022). Earthwork Volume Calculation, 3D Model Generation, and Comparative Evaluation Using Vertical and High-Oblique Images Acquired by Unmanned Aerial Vehicles. Aerospace, 9(10). https://doi.org/10.3390/aerospace9100606

Leitão, J. P., Moy De Vitry, M., Scheidegger, A., & Rieckermann, J. (2016). Assessing the quality of digital elevation models obtained from mini unmanned aerial vehicles for overland flow modelling in urban areas. Hydrology and Earth System Sciences, 20(4), 1637–1653. https://doi.org/10.5194/hess-20-1637-2016

Liu, H., Cheng, M., & Li, L. (2020). The influence of image properties on high-detail SfM photogrammetric surveys of complex geometric landforms: The application of a consumer-grade UAV camera in a rock glacier survey. Remote Sensing, 14(15), 3528. https://doi.org/10.3390/rs14153528

Mutaqin, B. W., Isnain, M. N., Marfai, M. A., Fatchurohman, H., Quesada-Román, A., & Khakhim, N. (2023). Assessing the accuracy of open-source digital elevation models for the geomorphological analysis of very small islands of Indonesia. Applied Geomatics, 15(4), 957–974. https://doi.org/10.1007/s12518-023-00533-8

Purinton, B., & Bookhagen, B. (2017). Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surface Dynamics, 5(2), 211–237. https://doi.org/10.5194/esurf-5-211-2017

Rufe, P. P. (2014). Digital orthoimagery base specification V1. 0 (No. 11-B5). US Geological Survey. https://doi.org/10.3133/tm11B5

Susetyo, D. B., Lumban-Gaol, Y. A., & Sofian, I. (2018). Prototype of national digital elevation model in Indonesia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(4), 687–692. https://doi.org/10.5194/isprs-archives-XLII-4-609-2018

Wolf, P. R., DeWitt, B. A., & Wilkinson, B. E. (1989). Elements of photogrammetry with interpretations and applications (2nd ed.). McGraw Hill LLC. https://books.google.co.id/books?id=bCx5rmWMHyAC

Xiao, X., Weiping, X., Qing, Z., Yeting, Z., & Zhiqiang, D. (2013). Integration method of TINs and Grids for multi-resolution surface modeling. Geo-Spatial Information Science, 16(1), 61–68. https://doi.org/10.1080/10095020.2013.774109

Yilmaz, N. (2018). Volume Calculation Through Using Digital Elevation Models Created By Different Interpolation Methods.

Zhang, Z., Gerke, M., Vosselman, G., & Yang, M. Y. (2018). Filtering photogrammetric point clouds using standard LiDAR filters towards DTM generation. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 4, 319-326.

Downloads

Published

2025-12-12

How to Cite

Budiyono, A. S. P. (2025). Analisis Perubahan Volume Lahan Pasca Kegiatan Galian Berbasis UAV dengan Evaluasi DEMNAS sebagai Permukaan Awal. Jurnal Ilmiah Geomatika, 5(2), 87–97. https://doi.org/10.31315/imagi.v5i2.14913