Analisis Model Regresi Spasial Kasus Tuberkulosis (TB) di Provinsi Sumatera Utara Menggunakan Ordinary Least Squares (OLS) dan Geographically Weighted Regression (GWR)

Authors

  • Arizal Bawasir Program Studi Sarjana Teknik Geomatika, Universitas Pembangunan Nasional (UPN) "Veteran" Yogyakarta
  • S R Bening Pratiwi Kusnadi Program Studi Sarjana Teknik Geomatika, Universitas Pembangunan Nasional (UPN) "Veteran" Yogyakarta
  • Wening Aisyah Fauziana Koman Program Studi Sarjana Teknik Geomatika, Universitas Pembangunan Nasional (UPN) "Veteran" Yogyakarta

DOI:

https://doi.org/10.31315/imagi.v5i2.15604

Keywords:

Tuberkolosis, regresi spasial, OLS, GWR, Sumatera Utara

Abstract

Penyakit tuberkulosis (TB) masih menjadi salah satu tantangan kesehatan masyarakat yang signifikan di Indonesia., termasuk di Provinsi Sumatera Utara. Analisis yang bersifat regional penting dilakukan karena distribusi kasus TB tidak hanya dipengaruhi oleh faktor individual, tetapi juga kondisi sosial-ekonomi yang bervariasi antar-wilayah. Dalam konteks tersebut, metode Ordinary Least Squares (OLS) dan Geographically Weighted Regression (GWR) digunakan untuk memodelkan regresi spasial dengan melibatkan berbagai variabel. Kedua metode ini dinilai sesuai untuk menganalisis faktor-faktor yang memengaruhi jumlah kasus TB. Penelitian ini menggunakan data tahun 2021, dengan jumlah kasus TB sebagai variabel dependen, serta kepadatan penduduk, jumlah sapi ternak, jumlah fasilitas kesehatan, dan jumlah penduduk miskin sebagai variabel independen. Hasil analisis korelasi menunjukkan bahwa jumlah fasilitas kesehatan memiliki hubungan paling kuat dengan jumlah kasus TB, sedangkan variabel lain memiliki hubungan yang relatif lemah. Pemodelan OLS memberikan gambaran global dengan nilai Adjusted R² sebesar 0,754, namun tidak mampu menangkap heterogenitas spasial antarwilayah. Sebaliknya, GWR menghasilkan nilai Adjusted R² sebesar 0,848 dan nilai AICc yang lebih rendah. Hal ini menunjukkan model GWR lebih efisien dan akurat dalam pemodelan spasial studi kasus TB Sumut. Local R² dari GWR juga mengungkapkan adanya variasi spasial signifikan. Temuan ini menegaskan bahwa distribusi kasus TB di Sumatera Utara dipengaruhi faktor spasial heterogen, sehingga penanggulangan TB perlu mempertimbangkan karakteristik lokal.

References

Ahmed, A., Mekonnen, D., Shiferaw, A. M., Belayneh, F., & Yenit, M. K. (2018). Incidence and determinants of tuberculosis infection among adult patients with HIV attending HIV care in north-east Ethiopia: A retrospective cohort study. BMJ Open, 8(3), e016961. https://doi.org/10.1136/bmjopen-2017-016961

Andini, N. L. E., & Oktora, S. I. (2022). Determinants of multidrug-resistant pulmonary tuberculosis in Indonesia: A spatial analysis perspective. Jurnal Varian, 6(1), 35–48. https://doi.org/10.30812/varian.v6i1.1663

Anselin, L. (2022). Spatial econometrics. Handbook of spatial analysis in the social sciences, 101-122.

Badan Pusat Statistik. (2018). Provinsi Sumatera Utara dalam Angka 2017. https://sumut.bps.go.id/id/publication

Badan Pusat Statistik. (2019). Provinsi Sumatera Utara dalam Angka 2018. https://sumut.bps.go.id/id/publication

Badan Pusat Statistik. (2020). Provinsi Sumatera Utara dalam Angka 2019. https://sumut.bps.go.id/id/publication

Cattaneo, M. D., Jansson, M., & Newey, W. K. (2018). Inference in linear regression models with many covariates and heteroscedasticity. Journal of the American Statistical Association, 113(523), 1350-1361. https://doi.org/10.1080/01621459.2017.1328360

Çelik, M., Döker, M. F., Kırlangıçoğlu, C., Ünsal, Ö. M. E. R., Gökçeoğlu, S., Ceylan, M. R., & Karabay, O. (2025). Comprehensive spatial investigation of tuberculosis dynamics and affecting factors in Şanlıurfa, Türkiye (2016–2023). GeoHealth, 9(7), e2024GH001235. https://doi.org/10.1029/2024GH001234

Dancey, C. P., & Reidy, J. (2017). Statistics Without Maths for Psychology (7th ed.). Pearson Education.

Dangisso, M. H., Datiko, D. G., & Lindtjørn, B. (2020). Identifying geographical heterogeneity of pulmonary tuberculosis in southern Ethiopia: A method to identify clustering for targeted interventions. Global Health Action, 13(1), 1785737. https://doi.org/10.1080/16549716.2020.1785737

Devi, K. R., Lee, L. J., Yan, L. T., Syafinaz, A. N., Rosnah, I., & Chin, V. K. (2021). Occupational exposure and challenges in tackling M. bovis at human–animal interface: a narrative review. International archives of occupational and environmental health, 94(6), 1147-1171. https://doi.org/10.1007/s00420-021-01677-z

Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. https://doi.org/10.1080/24694452.2017.1352480

Gujarati, D. N., & Porter, D. C. (2020). Basic econometrics (6th ed.). McGraw-Hill Education.

Kurniawati, D., Hastono, S. P., Safika, I., & Wahyuningsih, W. (2025). Geographically Weighted Regression Model of Stunting Determinants in Indonesia. Journal of Maternal and Child Health, 10(3), 140-152.

Li, Q., Liu, M., Zhang, Y., Wu, S., Yang, Y., Liu, Y., Amsalu, E., Tao, L., Liu, X., & Zhang, F. (2019). The spatio-temporal analysis of the incidence of tuberculosis and the associated factors in mainland China, 2009–2015. Infection, Genetics and Evolution, 75, 103949. https://doi.org/10.1016/j.meegid.2019.103949

Mahato, R. K., Htike, K. M., Koro, A. B., Yadav, R. K., Sharma, V., Kafle, A., & Ojha, S. C. (2025). Spatial autocorrelation with environmental factors related to tuberculosis prevalence in Nepal, 2020–2023. Infectious Diseases of Poverty, 14(1), 15. https://doi.org/10.1186/s40249-025-01283-y

Mallongi, A., & Dwinata, I. (2020). Risk factor model for pulmonary tuberculosis occurrence in Makassar using spatial approach. Enfermería Clínica, 30(Suppl. 2), 383–387. https://doi.org/10.1016/j.enfcli.2019.10.094

Naidoo, K., & Perumal, R. (2023). Advances in tuberculosis control during the past decade. The Lancet Respiratory Medicine, 11(4), 311-313.

Nyamu, W. M. (2020). Investigating the Determinant of Active Tuberculosis (Tb) Epidemic Across Eastern Africa Countries (Doctoral dissertation, University of Nairobi).

Octavianty, T., Toharudin, T., & Jaya, I. M. (2017). Geographically weighted Poisson regression semiparametric on modeling of the number of tuberculosis cases (Case study: Bandung city). In AIP Conference Proceedings (Vol. 1827, No. 1, p. 020022). AIP Publishing. https://doi.org/10.1063/1.4979434

Oshan, T. M., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information, 8(6), 269. https://doi.org/10.3390/ijgi8060269

Putra, I. G. N. E., Rahmaniati, M., Eryando, T., & Sipahutar, T. (2022). Modeling the prevalence of tuberculosis in Java, Indonesia: An ecological study using geographically weighted regression. Journal of Population and Social Studies, 30, 741–763. https://doi.org/10.25133/JPSSv302022.045

Riznawati, A., Eryando, T., & Prabawa, A. (2023). Model Spasial Faktor Risiko Tuberkulosis di Provinsi Jawa Barat Tahun 2021: Pemanfaatan Data Rutin untuk Pengambilan Keputusan. Jurnal Ilmiah Kesehatan Masyarakat: Media Komunikasi Komunitas Kesehatan Masyarakat, 16(1). https://doi.org/10.52022/jikm.v16i1.640

Rood, E., Khan, A. H., Modak, P. K., Mergenthaler, C., Van Gurp, M., Blok, L., & Bakker, M. (2019). A spatial analysis framework to monitor and accelerate progress towards SDG 3 to end TB in Bangladesh. ISPRS International Journal of Geo-Information, 8(1), 14. https://doi.org/10.3390/ijgi8010014

Shaweno, D., Karmakar, M., Alene, K. A., Ragonnet, R., Clements, A. C., Trauer, J. M., ... & McBryde, E. S. (2018). Methods used in the spatial analysis of tuberculosis epidemiology: a systematic review. BMC medicine, 16(1), 193. https://doi.org/10.1186/s12916-018-1178-4

Tadesse, S., Enqueselassie, F., & Hagos, S. (2018). Spatial and space-time clustering of tuberculosis in Gurage Zone, Southern Ethiopia. PLOS ONE, 13(6), e0198353. https://doi.org/10.1371/journal.pone.0198353

Tosepu, R., Sani, A., Effendy, D. S., & Ahmad, L. O. A. I. (2024). The association between climate variables and tuberculosis in Kolaka District, Southeast Sulawesi Province, Indonesia, 2013–2020: A Bayesian autoregressive model. F1000Research, 12, 1507. https://doi.org/10.12688/f1000research.140942.1

Uplekar, M., Atre, S., Wells, W. A., Weil, D., Lopez, R., Migliori, G. B., & Raviglione, M. (2016). Mandatory tuberculosis case notification in high tuberculosis-incidence countries: policy and practice. European Respiratory Journal, 48(6), 1571-1581. https://doi.org/10.1183/13993003.00956-2016

Wang, Q., Guo, J., & He, J. (2019). Spatiotemporal analysis of tuberculosis in mainland China using Geographically Weighted Regression. International Journal of Environmental Research and Public Health, 16(22), 4360. https://doi.org/10.3390/ijerph16224360

Wang, Q., Guo, L., Wang, J., Zhang, L., Zhu, W., Yuan, Y., & Li, J. (2019). Spatial distribution of tuberculosis and its socioeconomic influencing factors in mainland China, 2013–2016. Tropical Medicine & International Health, 24(9), 1104–1113. https://doi.org/10.1111/tmi.13280

Wang, Q., Guo, L., Zhang, L., Zhu, W., Yuan, Y., & Li, J. (2019). Spatial distribution of tuberculosis and its socioeconomic influencing factors in mainland China, 2013–2016. Tropical Medicine & International Health, 24(9), 1104–1113. https://doi.org/10.1111/tmi.13289

Wei, W., Yuan-Yuan, J., Ci, Y., Ahan, A., & Ming-Qin, C. (2016). Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using geographically weighted regression model. BMC Public Health, 16(1), 1058. https://doi.org/10.1186/s12889-016-3723-4

Wei, W., Yuan-Yuan, J., Ci, Y., Ahan, A., & Ming-Qin, C. (2016). Local spatial variations analysis of smear-positive tuberculosis in Xinjiang using geographically weighted regression model. BMC Public Health, 16, 1058. https://doi.org/10.1186/s12889-016-3732-9

World Health Organization. (2020). Global tuberculosis report 2020. World Health Organization. https://www.who.int/publications/i/item/9789240013131

World Health Organization. (2021). Global tuberculosis report 2021. World Health Organization. https://www.who.int/teams/global-tuberculosis-programme/tb-reports

Zhang, Y., dkk (2019). Spatial distribution of tuberculosis and its association with meteorological factors in mainland China. BMC Infectious Diseases, 19, 4008-1. https://doi.org/10.1186/s12879-019-4008-1

Downloads

Published

2025-11-04

How to Cite

Bawasir, A., Kusnadi, S. R. B. P., & Koman, W. A. F. (2025). Analisis Model Regresi Spasial Kasus Tuberkulosis (TB) di Provinsi Sumatera Utara Menggunakan Ordinary Least Squares (OLS) dan Geographically Weighted Regression (GWR). Jurnal Ilmiah Geomatika, 5(2), 1–16. https://doi.org/10.31315/imagi.v5i2.15604