Observasi Osilasi Resonansi Atmosfer di Ionosfer Setelah Erupsi Gunung Lewotobi Laki-laki Tahun 2025 Menggunakan GNSS-TEC

Authors

  • Ririn Wuri Rahayu Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Susilowati Universitas Pembangunan Nasional “Veteran” Yogyakarta

DOI:

https://doi.org/10.31315/imagi.v5i2.15708

Keywords:

Ionospheric Disturbances, Volcanic Eruption, GNSS-TEC

Abstract

Volcanic eruptions can generate atmospheric acoustic and gravity waves that propagate upward and induce oscillations in the ionosphere. These disturbances can be detected through variations in the Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) observations. In this study, we analyze ionospheric responses following the 2025 eruption of Mount Lewotobi Laki-laki, Indonesia, using GNSS-TEC data from nearby CORS stations. The analysis focuses on slant TEC variations associated with multiple GNSS satellites, revealing a distinct oscillatory pattern observed prominently on GLONASS satellite R42. After applying a high-pass filter to remove long-term trends, the residual TEC time series exhibited monochromatic oscillations with periods of approximately 3–5 minutes, consistent with the Type-1 (continuous) ionospheric disturbance described by Heki and Fujimoto (2022). Spectral analysis using the Blackman–Tukey method showed dominant frequency components near 3.7–5.4 mHz, corresponding to the acoustic resonance frequencies of the atmosphere. These findings provide evidence of atmospheric resonance oscillations in the ionosphere triggered by the Lewotobi Laki-laki eruption, demonstrating the potential of GNSS-TEC observations for monitoring ionospheric signatures of volcanic activity in Indonesia.

References

Blackman, R. B., & Tukey, J. W. (1958). The Measurement of Power Spectra: From the Point of View of Communications Engineering. Dover Publications.

Cahyadi, M. N., & Heki, K. (2015). Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: Mw dependence of the disturbance amplitudes. Geophysical Journal International, 200(1), 116-129. https://doi.org/10.1093/gji/ggu343

Cahyadi, M. N., Rahayu, R. W., Heki, K., & Nakashima, Y. (2020). Harmonic ionospheric oscillation by the 2010 eruption of the Merapi volcano, Indonesia, and the relevance of its amplitude to the mass eruption rate. Journal of Volcanology and Geothermal Research, 405, Article 107047. https://doi.org/10.1016/j.jvolgeores.2020.107047

Cahyadi, M. N., Rahayu, R. W., Heki, K., & Nakashima, Y. (2021). Comparison of volcanic explosions in Japan using impulsive ionospheric disturbances. Earth, Planets and Space, 73, Article 157. https://doi.org/10.1186/s40623-021-01539-5

Dautermann, T., Calais, E., Mattioli, G., & Jansma, P. (2009). GPS detection and modeling of ionospheric disturbances caused by the 2003 explosion of the Soufrière Hills Volcano, Montserrat. Journal of Geophysical Research: Solid Earth, 114(B2). https://doi.org/10.1029/2008JB005722

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. (1994). What is a geomagnetic storm?. Journal of Geophysical Research: Space Physics, 99(A4), 5771–5792. https://doi.org/10.1029/93JA02867

Heki, K. (2006). Explosion energy of the 2004 eruption of the Asama Volcano, Japan, inferred from ionospheric disturbances. Geophysical Research Letters, 33(14). https://doi.org/10.1029/2006GL026249

Heki, K., & Fujimoto, T. (2022a). Two types of ionospheric disturbances by volcanic eruptions: Lessons from the 2021 eruption of Fukutoku-Okanoba Volcano, Japan. Earth, Planets and Space, 74(1), 1–14. https://doi.org/10.1186/s40623-022-01654-8

Heki, K., & Fujimoto, T. (2022b). Atmospheric modes excited by the 2021 August eruption of the Fukutoku-Okanoba volcano, Izu–Bonin Arc, observed as harmonic TEC oscillations by QZSS. Earth, Planets and Space, 74(1), 27. https://doi.org/10.1186/s40623-022-01587-5

Heki, K. (2024). Atmospheric resonant oscillations by the 2022 January 15 eruption of the Hunga Tonga–Hunga Ha’apai volcano from GNSS-TEC observations. Geophysical Journal International, 236(3), 1840-1847. https://doi.org/10.1093/gji/ggae023

Hernández-Pajares, M., Juan, J. M., Sanz, J., Orús, R., García-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., & Krankowski, A. (2009). The IGS VTEC maps: A reliable source of ionospheric information since 1998. Journal of Geodesy, 83(3–4), 263–275. https://doi.org/10.1007/s00190-008-0266-1

Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2008). GNSS — Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and more. Springer-Verlag Wien.

Jin, S., Occhipinti, G., & Jin, R. (2015). GNSS ionospheric seismology: Recent observational evidences and characteristics. Earth-Science Reviews, 147, 54–64. https://doi.org/10.1016/j.earscirev.2015.04.006

Kanamori, H., & Mori, J. (1992). Harmonic excitation of atmospheric oscillations by volcanic eruptions. Journal of Geophysical Research: Solid Earth, 97(B12), 17351–17357. https://doi.org/10.1029/92JB01791

Menvielle, M., & Berthelier, A. (1991). The K-derived planetary indices: Description and availability. Reviews of Geophysics, 29(3), 415–432. https://doi.org/10.1029/91RG00994

Nakashima, Y., Heki, K., Takeo, A., Cahyadi, M. N., Aditiya, A., & Yoshizawa, K. (2016). Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth and Planetary Science Letters, 434, 112-116. https://doi.org/10.1016/j.epsl.2015.11.029

Pusat Vulkanologi dan Mitigasi Bencana Geologi. (2025, Agustus 1). Informasi letusan Gunung Lewotobi Laki-Laki. MAGMA Indonesia. https://magma.esdm.go.id/v1/gunung-api/informasi-letusan/bf35a6f2-6ed6-11f0-8afe-005056b54356/show

Tahira, M. (1995). Acoustic resonance of the atmosphere at 3.7 mHz. Geophysical Research Letters, 22(22), 2929–2932. https://doi.org/10.1029/95GL02811

Tapping, K. F. (2013). The 10.7 cm solar radio flux (F10.7). Space Weather, 11(7), 394–406. https://doi.org/10.1002/swe.20064

Watada, S., & Kanamori, H. (2010). Acoustic resonant oscillations between the atmosphere and the solid Earth during the 1991 Mount Pinatubo eruption. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010JB007747

Wen, Y., & Jin, S. (2020). Traveling ionospheric disturbances characteristics during the 2018 Typhoon Maria from GPS observations. Remote Sensing, 12(4), 746. https://doi.org/10.3390/rs12040746

Downloads

Published

2025-11-04

How to Cite

Rahayu, R. W., & Susilowati. (2025). Observasi Osilasi Resonansi Atmosfer di Ionosfer Setelah Erupsi Gunung Lewotobi Laki-laki Tahun 2025 Menggunakan GNSS-TEC. Jurnal Ilmiah Geomatika, 5(2), 75–86. https://doi.org/10.31315/imagi.v5i2.15708