Integrasi Metode Resistivitas dan Pemetaan Hidrogeologi Dalam Penentuan Zona Pemanfaatan Air Tanah Berkelanjutan Di Cekungan Airtanah Soe, Nusa Tenggara Timur
DOI:
https://doi.org/10.31315/imagi.v5i2.15730Keywords:
air tanah, geologi permukaan, geolistrik, CAT SoeAbstract
Kekeringan yang terjadi secara periodik di wilayah Soe menimbulkan tekanan besar terhadap kebutuhan dan ketersediaan air baku, sehingga diperlukan strategi pengelolaan airtanah yang berkelanjutan. Penelitian ini bertujuan untuk mengidentifikasi potensi dan arah aliran airtanah melalui integrasi metode resistivitas dan pemetaan hidrogeologi. Pengukuran dilakukan menggunakan konfigurasi Schlumberger pada 14 titik sounding dengan bentangan maksimum 500 meter. Hasil pengolahan menunjukkan tiga sistem akuifer, yaitu menggantung, bebas, dan tertekan. Akuifer produktif utama terdapat pada batuan karbonat dengan nilai resistivitas 30–150 Ohmmeter, sedangkan lapisan penutup berupa napal memiliki resistivitas rendah (<10 Ohmmeter). Berdasarkan peta muka airtanah dan analisis anisotropi, aliran airtanah bergerak dari bagian utara menuju selatan daerah penelitian serta sebagian mengarah ke tenggara dan barat daya mengikuti gradien topografi. Integrasi hasil geolistrik dan hidrogeologi ini efektif untuk menentukan zona konservasi dan pemanfaatan airtanah berkelanjutan sebagai langkah mitigasi kekeringan.
References
Ahmed, T. F., Afzal, M. A., Hashmi, H. N., Yousuf, H. M., Shah, S. S., & Khan, M. A. (2022). Electrical resistivity survey by Schlumberger electrode configuration technique for groundwater exploration in Pakistan. Pakistan Journal of Agricultural Research, 35(3), 558–568. https://doi.org/10.17582/journal.pjar/2022/35.3.558.568
Covington, M. D., Martin, J. B., Toran, L. E., Macalady, J. L., Sekhon, N., Sullivan, P. L., García, Á. A., Jr., Heffernan, J. B., & Graham, W. D. (2023). Carbonates in the critical zone. Earth’s Future, 11(3), e2022EF002765. https://doi.org/10.1029/2022EF002765
Driscoll, F. G. (1986). Groundwater and wells (2nd ed.). Johnson Division.
Gazali, M., Nurwantari, N. A., & Wibowo, E. (2023). Groundwater system characteristics of Soe area, East Nusa Tenggara, Indonesia: The role of rock properties and structural geology. Journal of Applied Sciences, Management and Engineering Technology, 6(2), 144–158. https://doi.org/10.31284/j.jasmet.2023.v6i2.31004
Holmes, J., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., Meldrum, P. I., Graham, J., & Binley, A. (2022). Application of petrophysical relationships to electrical resistivity. Engineering Geology, 298, 106546. https://doi.org/10.1016/j.enggeo.2021.106546
Igboama, W. N., Hammed, O. S., Fatoba, J. O., Aroyehun, M. T., & Ehiabhili, J. C. (2022). Review article on impact of groundwater contamination due to dumpsites using geophysical and physiochemical methods. Applied Water Science, 12(130). https://doi.org/10.1007/s13201-022-01653-z
Kaisa, R., Suroso, S., & Baharuddin, H. (2023). Projected water demand and groundwater sustainability assessment in the Soe Basin, TTS Regency, NTT. Jurnal Sumber Daya Air, 19(1), 11–22. https://doi.org/10.31159/jsda.v19i1.730
Loke, M. H. (2004). Tutorial: 2-D and 3-D Electrical Imaging Surveys (Revised ed.). Geotomo Software.
Lutfiana, H., Giamboro, W. S., Hidayat, W., & Sukmawan, D. I. (2025). Landslide characteristics from conceptual modelling of weathered layers using subsurface resistivity in Sangon, DIY. JGE (Jurnal Geofisika Eksplorasi), 11(02), 95-108. https://doi.org/10.23960/jge.v11i2.487
Mulyono, A., Wibowo, S., & Hidayat, N. (2020). Geoelectrical Resistivity for Groundwater Potential Mapping in Soe Region, NTT. Geophysics Research Journal, 65(4), 112-124.
Ostad, H., Abdollahi, M., Naghizadeh, M., & Rezaei, A. (2024). An integrated approach for characterization of a fractured aquifer. Journal of Hydrology, 634, 130531. https://doi.org/10.1016/j.jhydrol.2024.130531
Pascual, R., Fiorillo, F., Mateos, R. M., & Jiménez, A. (2024). The cultural ecohydrogeology of Mediterranean-climate zones. Environments, 11(6), 110. https://doi.org/10.3390/environments11060110
Rahayu, L., Hidayati, T., & Prasetyo, B. (2022). The impact of land-use change on groundwater sustainability in arid tropical regions: Case study of Soe, NTT. Jurnal Tanah dan Air, 19(2), 121–131. https://doi.org/10.31258/jta.19.2.121-131
Rahayu, S., Fitria, R., & Sudiarto, S. (2022). Geoelectrical Survey for Groundwater Conservation Zone Delineation in East Java. Journal of Hydrogeology, 56(1), 67-78.
Rahmawati, D., & Widodo, A. (2021). Application of the Schlumberger configuration geoelectric method for determining aquifer layer resistivity and depth. Jurnal Rekayasa Sipil Universitas Brawijaya, 11(2), 117–124.
Rosidi, H. M. D., Tjokrosapoetro, S., & Gafoer, S. (1996). Peta Geologi Lembar Atambua – Timor, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi.
Samsudin, R., Ahmad, N., & Wibowo, S. (2021). Application of Geoelectrical Methods for Groundwater Conservation Areas: A Review. Environmental Geophysics, 28(3), 98-112.
Sun, Z., Lin, Q., Yu, L., Wang, M., & Song, W. (2021). Pore-scale investigation of the electrical resistivity of porous media. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022608. https://doi.org/10.1029/2021JB022608
Van Riet, B., Six, S., Walraevens, K., Vandenbohede, A., & Hermans, T. (2022). Assessing the impact of fractured zones imaged by ERT on groundwater model prediction: A case study in a chalk aquifer in Voort (Belgium). Frontiers in Water, 3, 783983. https://doi.org/10.3389/frwa.2021.783983
Wibowo, S., Mulyono, A., & Suryanto, H. (2023). Groundwater Management Using Geophysical Methods in Soe Watershed, East Nusa Tenggara. Jurnal Geofisika Indonesia, 51(1), 13-24.
Zakaria, M. F. (2020). Identifikasi akuifer air tanah dalam menggunakan metode geolistrik Schlumberger di Desa Wedomartani, Kabupaten Sleman. Jurnal Geosains dan Remote Sensing, 1(2), 45–52
Zhou, J., Du, Y., Deng, Y., Tao, Y., Leng, Z., Ma, T., & Wang, Y. (2022). Source identification of groundwater phosphorus under different geological settings in the the central Yangtze River basin. Journal of Hydrology, 612, Article 128169. https://doi.org/10.1016/j.jhydrol.2022.128169
Ahmed, T. F., Afzal, M. A., Hashmi, H. N., Yousuf, H. M., Shah, S. S., & Khan, M. A. (2022). Electrical resistivity survey by Schlumberger electrode configuration technique for groundwater exploration in Pakistan. Pakistan Journal of Agricultural Research, 35(3), 558–568. https://doi.org/10.17582/journal.pjar/2022/35.3.558.568
Covington, M. D., Martin, J. B., Toran, L. E., Macalady, J. L., Sekhon, N., Sullivan, P. L., García, Á. A., Jr., Heffernan, J. B., & Graham, W. D. (2023). Carbonates in the critical zone. Earth’s Future, 11(3), e2022EF002765. https://doi.org/10.1029/2022EF002765
Driscoll, F. G. (1986). Groundwater and wells (2nd ed.). Johnson Division.
Gazali, M., Nurwantari, N. A., & Wibowo, E. (2023). Groundwater system characteristics of Soe area, East Nusa Tenggara, Indonesia: The role of rock properties and structural geology. Journal of Applied Sciences, Management and Engineering Technology, 6(2), 144–158. https://doi.org/10.31284/j.jasmet.2023.v6i2.31004
Holmes, J., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., Meldrum, P. I., Graham, J., & Binley, A. (2022). Application of petrophysical relationships to electrical resistivity. Engineering Geology, 298, 106546. https://doi.org/10.1016/j.enggeo.2021.106546
Igboama, W. N., Hammed, O. S., Fatoba, J. O., Aroyehun, M. T., & Ehiabhili, J. C. (2022). Review article on impact of groundwater contamination due to dumpsites using geophysical and physiochemical methods. Applied Water Science, 12(130). https://doi.org/10.1007/s13201-022-01653-z
Kaisa, R., Suroso, S., & Baharuddin, H. (2023). Projected water demand and groundwater sustainability assessment in the Soe Basin, TTS Regency, NTT. Jurnal Sumber Daya Air, 19(1), 11–22. https://doi.org/10.31159/jsda.v19i1.730
Loke, M. H. (2004). Tutorial: 2-D and 3-D Electrical Imaging Surveys (Revised ed.). Geotomo Software.
Lutfiana, H., Giamboro, W. S., Hidayat, W., & Sukmawan, D. I. (2025). Landslide characteristics from conceptual modelling of weathered layers using subsurface resistivity in Sangon, DIY. JGE (Jurnal Geofisika Eksplorasi), 11(02), 95-108. https://doi.org/10.23960/jge.v11i2.487
Mulyono, A., Wibowo, S., & Hidayat, N. (2020). Geoelectrical Resistivity for Groundwater Potential Mapping in Soe Region, NTT. Geophysics Research Journal, 65(4), 112-124.
Ostad, H., Abdollahi, M., Naghizadeh, M., & Rezaei, A. (2024). An integrated approach for characterization of a fractured aquifer. Journal of Hydrology, 634, 130531. https://doi.org/10.1016/j.jhydrol.2024.130531
Pascual, R., Fiorillo, F., Mateos, R. M., & Jiménez, A. (2024). The cultural ecohydrogeology of Mediterranean-climate zones. Environments, 11(6), 110. https://doi.org/10.3390/environments11060110
Rahayu, L., Hidayati, T., & Prasetyo, B. (2022). The impact of land-use change on groundwater sustainability in arid tropical regions: Case study of Soe, NTT. Jurnal Tanah dan Air, 19(2), 121–131. https://doi.org/10.31258/jta.19.2.121-131
Rahayu, S., Fitria, R., & Sudiarto, S. (2022). Geoelectrical Survey for Groundwater Conservation Zone Delineation in East Java. Journal of Hydrogeology, 56(1), 67-78.
Rahmawati, D., & Widodo, A. (2021). Application of the Schlumberger configuration geoelectric method for determining aquifer layer resistivity and depth. Jurnal Rekayasa Sipil Universitas Brawijaya, 11(2), 117–124.
Rosidi, H. M. D., Tjokrosapoetro, S., & Gafoer, S. (1996). Peta Geologi Lembar Atambua – Timor, Skala 1:250.000. Pusat Penelitian dan Pengembangan Geologi.
Samsudin, R., Ahmad, N., & Wibowo, S. (2021). Application of Geoelectrical Methods for Groundwater Conservation Areas: A Review. Environmental Geophysics, 28(3), 98-112.
Sun, Z., Lin, Q., Yu, L., Wang, M., & Song, W. (2021). Pore-scale investigation of the electrical resistivity of porous media. Journal of Geophysical Research: Solid Earth, 126(10), e2021JB022608. https://doi.org/10.1029/2021JB022608
Van Riet, B., Six, S., Walraevens, K., Vandenbohede, A., & Hermans, T. (2022). Assessing the impact of fractured zones imaged by ERT on groundwater model prediction: A case study in a chalk aquifer in Voort (Belgium). Frontiers in Water, 3, 783983. https://doi.org/10.3389/frwa.2021.783983
Wibowo, S., Mulyono, A., & Suryanto, H. (2023). Groundwater Management Using Geophysical Methods in Soe Watershed, East Nusa Tenggara. Jurnal Geofisika Indonesia, 51(1), 13-24.
Zakaria, M. F. (2020). Identifikasi akuifer air tanah dalam menggunakan metode geolistrik Schlumberger di Desa Wedomartani, Kabupaten Sleman. Jurnal Geosains dan Remote Sensing, 1(2), 45–52
Zhou, J., Du, Y., Deng, Y., Tao, Y., Leng, Z., Ma, T., & Wang, Y. (2022). Source identification of groundwater phosphorus under different geological settings in the the central Yangtze River basin. Journal of Hydrology, 612, Article 128169. https://doi.org/10.1016/j.jhydrol.2022.128169
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Eko Wibowo, ULI ULFA, Tiara Sarastika, Muhammad Gazali Rahman

This work is licensed under a Creative Commons Attribution 4.0 International License.





