Evaluation of Hydraulic Fracturing Stimulation Based on Engineering and Economic Aspect at “ADN-007” Layer A3
DOI:
https://doi.org/10.31315/jpgt.v5i2.12941Abstract
The "ADN-007" is a production well located in the "APS" Field of the South Sumatra Basin, which has been operating since 1959. In 2023, a workover and hydraulic fracturing stimulation were performed at a depth of 1280 meters, precisely in the Talang Akar Formation, which consists of sandstone. The evaluation involved collecting engineering and economic data and performing calculations such as fracture geometry using the PKN 2D (Perkins-Kern-Nordgren) manual method, Fold of Increase using the Cinco-Ley Samaniego Dominique method, production prediction using the IPR Pudjo Sukarno method, and economic analysis. Based on the geometry evaluation calculations, the fracture length (xf) formed is 85.339 m, with a fracture height of 18.9 m, and an average permeability of 56.692 mD. The effective well radius (rw’) is 69.996 ft, and the total skin after hydraulic fracturing stimulation is -3.992. According to the nodal analysis results, “ADN-007” has optimal production after stimulation from 2023 to 2027, producing consecutively 330 b/d, 260 b/d, 198 b/d, 130 b/d, and 79 b/d. However, based on economic aspects, this stimulation is classified as uneconomical because the Profit to Investment Ratio value obtained is only 0.65.
References
Allen, T. O., & Roberts, A. P. (1982). Productions Volume 1. Oklahoma: Oil adn Gas International Consultants.
Beugelsdijk, L., Pater, C. d., & Sato, K. (2000, April 25). Experimental Hydraulic Fracture Propagation in a Multi-Fractured Medium. SPE Asia Pacific Conference on Integrated Modelling for Asset Management(SPE 59419), 1-8. doi:doi:10.2118/59419-ms
Bishop, M. G. (2001). South Sumatra Basin Province, Indonesia: The Lahat/Talang Akar-Cenozoic Total Petroleum System. Denver, Colorado: U.S. Geological Survey.
Bree, P. D., & Walters, J. (1989). Micro/Minifrac Test Procedures and Interpretation for In Situ Stress Determination. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 26(6), 515-521. doi:https://doi.org/10.1016/0148-9062(89)91429-0
Brown, K. E. (1984). The Technology of Artificial Lift Methods vol 4. Tulsa, Oklahoma: PennWell Publishing Company.
Brown, K. E., & Beggs, H. D. (1977). The Technology of Artificial Lift Method Vol 1. Tulsa, Oklahoma: PennWell Publishing Company.
Cahyaningsih, B., Prabu, U. A., & Herlina, W. (2015). EVALUASI HASIL APLIKASI HYDRAULIC FRACTURING PADA RESERVOIR KARBONAT SUMUR BCN-28 DI STRUKTUR APP PT PERTAMINA EP ASSET 2 PENDOPO FIELD. Retrieved November 26, 2022, from https://www.neliti.com/publications/101830/evaluasi-hasil-aplikasi-hydraulic-fracturing-pada-reservoir-karbonat-sumur-bcn-2
Cinco Ley, H., V.F, S., & A.N, D. (1978). Transient Pressure Behavior for a Well with a Finite-Conductivity Vertical Pressure. Mexico: Society of Petroleum Engineers.
De Coster, G. (1974). The Geology of the Central and South Sumatra. Indonesian Petroleum Association 3rd Annual Convention.
Dila, N. R. (2019, Juni). Evaluasi Stimulasi Hydraulic Fracturing Menggunakan Software Mfrac. Jurnal OFFSHORE( e -ISSN : 2549-8681), 30-35. Retrieved November 2022
Donaldson, E. C., Alam, W., & Tetrahedron, N. B. (2013). Hydraulic Fracturing Explained Evaluation, Implementation and Challenges. Houston Texas: Gulf Publising Company.
Economides, J. M., Hill, A. D., Ehlig, C., & Zhu, D. (1994). Petroleum Production System. New Jersey.
Economides, M., & Nolte, K. (1989). Reservoir Stimulation in Petroleum Production. In K. N. MJ. Economides, Reservoir Stimulation (pp. 1-28).
Ginger, D., & K., F. (2005). The Petroleum Systems and Future Potential of the South Sumatra Basin. IPA05-G-039.
Gruesbeck, C., & Collins, R. E. (1982, December 1). Particle Transport Through Perforations. doi:https://doi.org/10.2118/7006-PA
Guo, B., Liu, X., & Tan, X. (2017). Petroleum Production Engineering. United States: Gulf Profesional Publishing.
Hong, K. (1975). Productivity of Perforated Completions in Formations With or Without Damage. SPE-AIME, Chevron Oil Field Research.
Horner, R. (1995). Modern Well Test Analysis. United State of America: Petroway.
Hubbert, M. K., & Willis, D. G. (1957). Mechanics of Hydraulic Fracaturing. AIME Petroleum Transaction, 210, 153-168. doi:https://doi.org/10.2118/686-G
Jasipto, A., Komar, H., Prabu, U., Hamzah, K., & MK, R. (2020). REDESIGN HYDRAULIC FRACTURING DALAM USAHA OPTIMASI PRODUKSI PADA SUMUR X-100 LAPANGAN X BLOK RIMAU PT. XYZ. Seminar Nasional AVoER XII (pp. 1003-1009). Palembang: Fakultas Teknik Universitas Sriwijaya. Retrieved November 24, 2022
Koesoemadinata, R. (1980). Geologi Minyak dan Gas Bumi. Institut Teknologi Bandung.
Kullman, J. (2011). The Complicated World of Proppant Selection. South Dakkota Sch. Mines Techn.
McGuire, W., & Sikora, V. (1960). The Effect of Vertical Fractures on Well Productivity. Journal of Petroleum Technology, 401-403.
Plahn, S., Nolte, K., & L.G Thompson, S. M. (1997). A Quantitative Investigation of the Fracture Pump-In/Flowback Test. SPE Production & Facilities, 20-27.
Pulunggono, A. (1985). The Changing Pattern of Ideas on Sundaland Within The last Hundred Years. Proceedings Indonesian Petroleum Association.
Suwardi. (2009, Desember). Evaluasi Hydrulic Fracturing Dalam Rangka Peningkatan Produktivitas Formasi. Jurnal Ilmu Kebumian Teknologi Mineral, 22, 182-191. Retrieved November 27, 2022, from http://eprints.upnyk.ac.id/1132/1/Evaluasi%20%20Hydraulic%20Fracturing%20Dalam%20Rangka%20Meningkatkan%20Produktivitas%20Formasi%286%29.pdf
Thompson, G. (1962). Effect of Formation Compressive Strength on Perforator Performance . Drilling and Production Practice .
Tjondro, Bambang. (2005). Stimulation Acidizing and Hydraulic Fracturing. Yogyakarta: IATMI.
Weny, A., Wardana, R. S., & Sinaga, J. F. (2019, September). ANALISA PREDIKSI TEKANAN PORI FORMASI MENGGUNAKAN PERSAMAAN EATON. Jurnal Petro, VOLUME VIII No. 3, 127-130. Retrieved November 26, 2022
White, J. E. (1981). Key Factors in MHF Design. J Pet Technol.