Implementation of CO2 Source-Sinks Match Database Development. Case Study: West Java
DOI:
https://doi.org/10.31315/jpgt.v5i2.13432Abstract
Carbon capture and storage (CCS) is widely recognized as a significant technology in mitigating carbon dioxide (CO2) emissions from major industrial facilities, such as power plants and refineries. CCS involves the capture of concentrated CO2 streams from point sources, followed by subsequent safe and secure storage in appropriate geological reservoirs. We developed spatial database system using Geographic Information System (GIS) tools to facilitate source-sink matching between CO2 emitter and CO2 storage to foster the implementation of CCS/CCUS technologies in Indonesia. In this study, we proposed workflow approach to determine the location of CO2 sinks/storage candidates given limited data available. Additionally, this method spatially characterizes and represents probable clusters where opportunities for CCS/CCUS implementation are present. We consider the existing pipeline route and Right of Ways (ROW) to minimize the potential cost related to transportation of CO2 using pipeline. The priority of available storage is classified based on the storage capacity, distance, and other technical criteria to determine the optimal location of potential CO2 injection. We applied the workflow to Coal Fired Power Plant in West Java as the CO2 source, and we obtained 6 depleted fields that are connected to the existing ROW with CO2 storage capacity of 42.03 MMT.
References
Al Adasani, A., & Bai, B. (2011). Analysis of EOR projects and updated screening criteria. Journal of Petroleum Science and Engineering, 79(1–2), 10–24. https://doi.org/10.1016/j.petrol.2011.07.005
Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Christensen, N. P., Holloway, S., Mathiassen, O.-M., & Forum, C. S. L. (2007). Phase II Final Report from the Task Force for Review and Identification of Standards for CO2 Storage Capacity Estimation. Estimation of CO2 Storage Capacity in Geological Media - Phase 2 -, August 2005, 43. http://www.cslforum.org/publications/documents/PhaseIIReportStorageCapacityMeasurementTaskForce.pdf
Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1(4), 430–443. https://doi.org/10.1016/S1750-5836(07)00086-2
Bains, P., Psarras, P., & Wilcox, J. (2017). CO2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146–172. https://doi.org/10.1016/j.pecs.2017.07.001
Becattini, V., Gabrielli, P., Antonini, C., Campos, J., Acquilino, A., Sansavini, G., & Mazzotti, M. (2022). Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. International Journal of Greenhouse Gas Control, 117(October 2021), 103635. https://doi.org/10.1016/j.ijggc.2022.103635
Bolstad, P. (2019). GIS Fundamentals: A First Text on Geographic Information Systems, 6th edition.
Chauvy, R., Lai, Y., & Chen, P. (2022). A Geographical Source-sink Matching for Carbon capture and Utilization deployment in Taiwan. International Journal of Greenhouse Gas Control, 119(1), 103722. https://doi.org/10.1016/j.ijggc.2022.103722
Department of Energy & Climate Change., Global CCS Institute., & Asian Development Bank. (2013). Prospects for carbon capture and storage in Southeast Asia.
Fan, J. L., Xu, M., Wei, S., Shen, S., Diao, Y., & Zhang, X. (2021). Carbon reduction potential of China’s coal-fired power plants based on a CCUS source-sink matching model. Resources, Conservation and Recycling, 168(June 2020), 105320. https://doi.org/10.1016/j.resconrec.2020.105320
Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M., Allen, D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B., & Guthrie, G. (2011). U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 5(4), 952–965. https://doi.org/10.1016/j.ijggc.2011.03.010
IEA. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. International Energy Agency, 224. https://www.iea.org/reports/net-zero-by-2050
Iskandar, Utomo P., Usman, U., & Sofyan, S. (2013). Ranking of Indonesia sedimentary basin and storage capacity estimates for CO2 geological storage. Energy Procedia, 37, 5172–5180. https://doi.org/10.1016/j.egypro.2013.06.433
Iskandar, Utomo Pratama, & Syahrial, E. (2009). Carbon Capture And Storage (Ccs) - Enhanced Oil Recovery (Eor): Global Potential In Indonesia. Scientific Contributions Oil and Gas, 32(3), 228–238. https://doi.org/10.29017/scog.32.3.855
Marbun, B. T. H., Prasetyo, D. E., Prabowo, H., Susilo, D., Firmansyah, F. R., Palilu, J. M., Silamba, I. C., Santoso, D., Kadir, W. G. A., Sule, R., Kardani, I., Saprudin, W., & Andhika, B. (2019). Well integrity evaluation prior to converting a conventional gas well to CO2 injector well – Gundih CCS pilot project in Indonesia (phase 1). International Journal of Greenhouse Gas Control, 88(October 2018), 447–459. https://doi.org/10.1016/j.ijggc.2019.06.006
Matejicek, L. (2017). Assessment of Energy Sources Using GIS. In Assessment of Energy Sources Using GIS. https://doi.org/10.1007/978-3-319-52694-2
Minister of Environment and Forestry. (2022). Enhanced NDC Republic of Indonesia 2022. https://www.ptonline.com/articles/how-to-get-better-mfi-results
Mulyasari, F., Harahap, A. K., Rio, A. O., Sule, R., & Kadir, W. G. A. (2021). Potentials of the public engagement strategy for public acceptance and social license to operate: Case study of Carbon Capture, Utilisation, and Storage Gundih Pilot Project in Indonesia. International Journal of Greenhouse Gas Control, 108, 103312. https://doi.org/10.1016/j.ijggc.2021.103312
NPC. (2019). Meeting the dual challenge: a roadmap to at-scale deployment of carbon capture, use, and storage. December 2019.
Raza, A., Gholami, R., Rezaee, R., Rasouli, V., & Rabiei, M. (2019). Significant aspects of carbon capture and storage – A review. Petroleum, 5(4), 335–340. https://doi.org/10.1016/j.petlm.2018.12.007
Rikalovic, A., Cosic, I., & Lazarevic, D. (2014). GIS based multi-criteria analysis for industrial site selection. Procedia Engineering, 69, 1054–1063. https://doi.org/10.1016/j.proeng.2014.03.090
Ritchie, H., Roser, M., & Rosado, P. (2020). CO₂ and Greenhouse Gas Emissions. Our World in Data.
Sapiie, B., Danio, H., Priyono, A., Asikin, A. R., Widarto, D. S., Widianto, E., & Tsuji, T. (2015). Geological characteristic and fault stability of the Gundih CCS pilot project at central Java, Indonesia. 1, 110–113. https://doi.org/10.1190/segj122015-029
Smith, N., Boone, P., Oguntimehin, A., Essen, G. Van, Guo, R., Reynolds, M. A., Friesen, L., Cano, M., & Brien, S. O. (2022). International Journal of Greenhouse Gas Control Quest CCS facility : Halite damage and injectivity remediation in CO 2 injection wells. International Journal of Greenhouse Gas Control, 119(May), 103718. https://doi.org/10.1016/j.ijggc.2022.103718
Sun, L., Jiang, Y., Guo, Q., Ji, L., Xie, Y., Qiao, Q., Huang, G., & Xiao, K. (2021). A GIS-based multi-criteria decision making method for the potential assessment and suitable sites selection of PV and CSP plants. Resources, Conservation and Recycling, 168(September 2020), 105306. https://doi.org/10.1016/j.resconrec.2020.105306
Turan, G., Zapantis, A., Kearns, D., Tamme, E., Staib, C., Zhang, T., Burrows, J., Gillespie, A., Havercroft, I., Rassool, D., Consoli, C., & Liu, H. (2021). Global status of CCS 2021. Global CCS Institute, 1–43. https://www.japanccs.com/wp/wp-content/uploads/2021/10/0-4-GCCSI_Jarad-Daniels.pdf
Usman, D. I. (2018). Prospect for Co2 Eor To Offset the Cost of Ccs At Coal Power Plants. Scientific Contributions Oil and Gas, 39(3), 107–118. https://doi.org/10.29017/scog.39.3.94
Usman, U., Saputra, D. D., & Firdaus, N. (2021). Source Sink Matching for Field Scale CCUS CO2-EOR Application in Indonesia. Scientific Contributions Oil and Gas, 44(2), 97–106. https://doi.org/10.29017/scog.44.2.586
Wei, Y. M., Kang, J. N., Liu, L. C., Li, Q., Wang, P. T., Hou, J. J., Liang, Q. M., Liao, H., Huang, S. F., & Yu, B. (2021). A proposed global layout of carbon capture and storage in line with a 2 °C climate target. Nature Climate Change, 11(2), 112–118. https://doi.org/10.1038/s41558-020-00960-0
Yildirim, V., Yomralioglu, T., Nisanci, R., Çolak, H. E., Bediroğlu, Ş., & Saralioglu, E. (2017). A spatial multicriteria decision-making method for natural gas transmission pipeline routing. Structure and Infrastructure Engineering, 13(5), 567–580. https://doi.org/10.1080/15732479.2016.1173071
Zhang, Z., Pan, S. Y., Li, H., Cai, J., Olabi, A. G., Anthony, E. J., & Manovic, V. (2020). Recent advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews, 125(March), 109799. https://doi.org/10.1016/j.rser.2020.109799
Zhu, Q., Wang, C., Fan, Z., Ma, J., & Chen, F. (2019). Optimal matching between CO2 sources in Jiangsu province and sinks in Subei-Southern South Yellow Sea basin, China. Greenhouse Gases: Science and Technology, 9(1), 95–105. https://doi.org/10.1002/ghg.1835