Perancangan Geometri Peledakan Berdasarkan Karakteristik Batuan dan Struktur Geologi Permukaan Hasil Pemetaan UAV pada Batuan Metamorf di Penambangan Emas

Authors

  • Samantha Michelle Frampton Universitas Pembangunan Nasional Veteran Yogyakarta
  • Singgih Saptono Universitas Pembangunan Nasional Veteran Yogyakarta
  • Bagus Wiyono Universitas Pembangunan Nasional Veteran Yogyakarta
  • Nurkhamim Universitas Pembangunan Nasional Veteran Yogyakarta
  • Edy Nursanto Universitas Pembangunan Nasional Veteran Yogyakarta

DOI:

https://doi.org/10.31315/jtp.v11i1.14710

Keywords:

Blastability Index, Blasting geometry, Blast fragmentation, Kuz-Ram model, UAV

Abstract

Ukuran fragmentasi hasil peledakan memegang peran penting dalam keberhasilan proses ekstraksi emas di PT J Resources Bolaang Mongondow. Permasalahan yang dihadapi adalah belum optimalnya rancangan peledakan akibat belum diperhitungkannya variasi karakteristik batuan berdasarkan tipe alterasi. Fragmentasi yang tidak sesuai sasaran menghambat proses pelindian dan menurunkan efisiensi operasional. Oleh karena itu, penelitian ini dilakukan untuk menentukan nilai Blastability Index (BI) dari berbagai tipe alterasi batuan metamorf dan menyusun rancangan geometri peledakan yang adaptif terhadap kondisi geologi setempat, sehingga diperoleh fragmentasi batuan dengan ukuran P80 ≤ 10 cm.Penelitian ini dilakukan untuk menentukan nilai Blastability Index (BI) berdasarkan parameter geoteknik dari berbagai tipe alterasi batuan, serta menyusun rancangan geometri peledakan adaptif menggunakan pendekatan teoritis C.J. Konya, R.L. Ash, dan ICI Explosive. Penelitian melibatkan pemetaan struktur geologi menggunakan UAV dan fotogrametri, pengukuran BI dengan metode Lilly (1986), analisis fragmentasi aktual menggunakan Split Desktop, serta simulasi fragmentasi teoritis dengan model Kuz-Ram. Hasil penelitian menunjukkan bahwa pendekatan Konya menghasilkan fragmentasi paling mendekati target (P80 ≤ 10 cm), terutama pada batuan dengan RF tinggi. Model Kuz-Ram efektif memprediksi distribusi ukuran berdasarkan nilai A dari BI. Pendekatan berbasis BI terbukti efisien dan adaptif, serta mampu meningkatkan kinerja pelindian. Oleh karena itu, rancangan geometri peledakan berbasis Konya direkomendasikan untuk diterapkan di lokasi penelitian.

References

Adiansyah, J.S., 2021. Analisis Fragmentasi Peledakan dan Efisiensi Split Desktop terhadap Kinerja Unit Crusher di PT XYZ. Jurnal Teknologi Mineral dan Batubara, 17(2), pp. 85–92.

Afeni, T.B. & Cawood, F.T., 2013. Application of UAV systems in mining. The South African Institute of Mining and Metallurgy, 113(2), pp. 807–813.

Ash, R.L., 1963. Design of Blasting Rounds. Engineering and Mining Journal, 164(3), pp. 91–96.

Choudhary, B.S., Kumar, V. & Raina, A.K., 2012. Rock Fragmentation by Blasting – A Review. Journal of Rock Mechanics and Geotechnical Engineering, 4(1), pp. 75–87.

Choudhary, V., Pandey, V. & Jha, V.K., 2020. Use of Drones in Geological Mapping and Monitoring. International Journal of Remote Sensing, 41(10), pp. 3952–3973.

Cunningham, C.V.B., 1983. The Kuz-Ram Fragmentation Model—20 Years On. Explosives and Blasting Technique, pp. 201–210.

Eloranta, J.W., 1995. The Efficiency of Blasting Versus Crushing and Grinding. Proc. International Symposium on Rock Fragmentation, pp. 1–10.

Gaunt, J., Symonds, D. & McNamara, G., 2015. Optimisation of Drill and Blast for Mill Throughput Improvement at Ban Houayxai Mine. Proc. 11th International Mining Geology Conference, pp. 101–110.

Hustrulid, W.A. & Bullock, R.L., 2001. Underground Mining Methods: Engineering Fundamentals and International Case Studies. Society for Mining, Metallurgy, and Exploration.

ICI Explosives, 1996. Blasting Principles for Open Pit Mining. ICI Australia Operations Pty Ltd.

Kahriman, A., 2001. Analysis of Blasting Damage in an Underground Gold Mine. International Journal of Rock Mechanics and Mining Sciences, 38(3), pp. 449–456.

Kanchibotla, S.S., Valery, W. & Morrell, S., 1999. Fragmentation—The First Step in Comminution. Proc. Explo 1999 Conference, pp. 137–144.

Konya, C.J. & Walter, E.J., 1990. Rock Blasting and Overbreak Control. U.S. Department of Transportation, Federal Highway Administration.

Kuznetsov, V.M., 1973. The Mean Diameter of Fragments Formed by Blasting Rock. Soviet Mining Science, 9(2), pp. 144–148.

Latham, J.P., Xiang, J. & Reddish, D.J., 2008. Modelling of Rock Fragmentation Using Digital Image Analysis. International Journal of Rock Mechanics and Mining Sciences, 45(1), pp. 134–144.

Lopez, L.M. & Martin, R.C., 2011. Blast Design and Its Effect on Fragmentation in Open Pit Mines. Mining Engineering, 63(9), pp. 37–43.

Mohamad, A.S., Suhardi, B. & Mustaffa, Z., 2015. Evaluation of Blast Fragmentation Using Split-Desktop Software. International Journal of Mining Science and Technology, 25(1), pp. 55–60.

Morin, P., et al., 2007. Aerial Photogrammetry Using UAV for Mining Applications. Photogrammetric Engineering & Remote Sensing, 73(10), pp. 1159–1165.

Ouchterlony, F., 2005. The Swebrec Function: Linking Fragmentation by Blasting and Crushing. Mining Technology, 114(1), pp. 29–44.

Persson, A., Holmberg, R. & Lee, J., 1994. Rock Blasting and Explosives Engineering. CRC Press.

Sarma, D.S.R. & Murthy, V.M.S.R., 2002. Blasting Damage in Jointed Rocks. Geotechnical and Geological Engineering, 20(3), pp. 197–210.

Scott, A. & Onederra, I., 2015. Quantifying the Effect of Fragmentation on Haulage Efficiency. Mining Technology, 124(2), pp. 93–99.

Sharma, P.D., 2016. Environmental Impact of Blasting Operations. Journal of Environmental Management, 179, pp. 147–157.

Singh, P.K. & Narendrula, R., 2010. Blast Fragmentation and Its Impact on Crushing and Grinding. International Journal of Rock Mechanics and Mining Sciences, 47(3), pp. 417–424.

Published

2025-06-26

Issue

Section

Articles