Potensi Karbon Aktif Menggunakan Material Lokal Untuk Adsorpsi Logam Berat Dari Air Asam Tambang: Sebuah Kajian

Authors

DOI:

https://doi.org/10.31315/jtp.v11i1.14839

Keywords:

acid mine drainage, adsorption, activated carbon, local materials

Abstract

Air asam tambang (AAT) merupakan limbah berbahaya yang mengandung logam berat seperti besi (Fe), mangan (Mn), tembaga (Cu), kadmium (Cd), dan merkuri (Hg), yang berpotensi mencemari lingkungan serta membahayakan kesehatan manusia. Kajian literatur ini bertujuan untuk mengevaluasi potensi karbon aktif berbasis material lokal dalam mengadsorpsi logam berat dari AAT melalui kajian terhadap sebelas artikel ilmiah terkini. Sumber karbon aktif yang digunakan meliputi limbah pertanian, biomassa, dan batubara lokal, yang telah melalui proses aktivasi fisik, kimia, atau kombinasi keduanya. Hasil kajian menunjukkan bahwa karbon aktif dari material lokal mampu menurunkan konsentrasi logam berat dengan efisiensi bervariasi, mencapai hingga 99,93%. Ukuran partikel dan metode aktivasi berpengaruh signifikan terhadap kapasitas adsorpsi, di mana ukuran partikel lebih kecil dan penggunaan aktivasi kimia atau kombinasi meningkatkan luas permukaan serta porositas karbon aktif

Author Biography

Mycelia Paradise, Institut Teknologi Nasional Yogyakarta

Mining Engineering Department

References

Adinata, D., Wandaud, W., & Aroua, M. K. (2005). Preparation and characterization of activated carbon from palm shell by chemical activation with K₂CO₃. Bioresource Technology, 98(1), 145.https://doi.org/10.1016/j.biortech.2005.11.006

Ahmad, H., Ee, C., & Baharudin, N. (2016). A preliminary study for removal of heavy metals from acidic synthetic wastewater by using pressmud-rice husk mixtures. In IOP Conference Series: Earth and Environmental Science (Vol. 36, p. 012031). IOP Publishing. https://doi.org/10.1088/1755-1315/36/1/012031

Akçıl, A., & Koldaş, S. (2005). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14(12-13), 1139–1145.https://doi.org/10.1016/j.jclepro.2004.09.006

Akhtar, M. S., Ali, S., & Zaman, W. (2024). Innovative adsorbents for pollutant removal: Exploring the latest research and applications. Molecules, 29(18), 4317.

Amari, K., Valera, P., Hibti, M., Pretti, S., Marcello, A., & Essarraj, S. (2014). Impact of mine tailings on surrounding soils and groundwater: Case of Kettara old mine, Morocco. Journal of African Earth Sciences, 100, 437–445. https://doi.org/10.1016/j.jafrearsci.2014.07.017

Aziz, K. H. H., Mustafa, F. S., Omer, K. M., Hama, S., Hamarawf, R. F., & Rahman, K. O. (2023). Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances, 13,14608–14648. https://doi.org/10.1039/D3RA00723E

Aziz, S., Mazhar, A. R., Ubaid, A., Shah, S. M. H., Riaz, Y., Talha, T., & Jung, D. W. (2024). A comprehensive review of membrane-based water filtration techniques [Review of A comprehensive review of membrane-based water filtration techniques]. Applied Water Science, 14(8). Springer Nature. https://doi.org/10.1007/s13201-024-02226-y

Bishnoi, N. R., Bajaj, M., Sharma, N., & Gupta, A. (2003). Adsorption of Cr(VI) on activated rice husk carbon and activated alumina. Bioresource Technology, 91(3), 305–307. https://doi.org/10.1016/S0960-8524(03)00204-9

Busyairi, M., Firlina, F., Sarwono, E., & Saryadi, S. (2019). Pemanfaatan serbuk kayu meranti menjadi karbon aktif untuk penurunan kadar besi (Fe), mangan (Mn) dan kondisi pH pada air asam tambang. Jurnal Sains & Teknologi Lingkungan, 11(2), 87-101

Chakravarty, P., Sarma, N. S., & Sarma, H. (2010). Biosorption of cadmium(II) from aqueous solution using heartwood powder of Areca catechu. Chemical Engineering Journal, 162(3), 949–955. https://doi.org/10.1016/j.cej.2010.06.048

Chen, J., Deng, S., Wei, J., Li, X., & Chang, J. (2021). Removal of multiple heavy metals from mining-impacted water by biochar-filled constructed wetlands: Adsorption and biotic removal routes. Bioresource Technology, 331, 125061. https://doi.org/10.1016/j.biortech.2021.125061

Courtney, R., & Pietrzykowski, M. (2018). Soil quality indices for evaluation of acid mine spoil. In Elsevier eBooks (pp. 33–54). Elsevier BV. https://doi.org/10.1016/B978-0-12-812986-9.00002-6

Demirbaş, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243. https://doi.org/10.1016/j.jaap.2004.07.003

Dhiwar, J. (2021). Metal removal from acid mine water by using the SAPS. International Journal for Research in Applied Science and Engineering Technology, 9(4), 1694–1698. https://doi.org/10.22214/ijraset.2021.34648

Eli, M., Magdalena, H., Nugroho, W., Devi, S. D., & Winarno, A. (2024). Pemanfaatan Kulit Singkong Guna Menurunkan pH Dan Kadar Fe Mn Pada Air Asam Tambang Pada PT. Anugerah Krida Utama Kalimantan Timur. Jurnal Cahaya Mandalika Issn 2721-4796 (Online), 5(1), 284-296

Gee, G.W. and Or, D. (2002). 2.4 Particle-Size Analysis. In Methods of Soil Analysis (eds J.H. Dane and G. Clarke Topp). https://doi.org/10.2136/sssabookser5.4.c12

Guo, X., Zhang, S., & Shan, X. (2007). Adsorption of metal ions on lignin. Journal of Hazardous Materials, 151(1), 134–142. https://doi.org/10.1016/j.jhazmat.2007.05.065

Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal–a review. Journal of environmental management, 90(8), 2313-2342

Hariani, P. L., Faizal, M., Ridwan, R., Marsi, & Setiabudidaya, D. (2013). Characterization of Activated Carbon from Oil Palm Shell Prepared by H3PO4 for Procion Red Dye Removal. Applied Mechanics and Materials, 391, 51. https://doi.org/10.4028/www.scientific.net/amm.391.51

Hendriono, H., Cahyadi, T. A., & Ernawati, R. (2025). Neutralizing Acid Mine Drainage (AMD) and Reducing Iron (Fe) and Copper (Cu) Content Using Biomass Adsorbents. Journal of Earth and Marine Technology (JEMT), 5(2), 142-150.

Imani, A., Sukwika, T., & Febrina, L. (2021). Karbon aktif ampas tebu sebagai adsorben penurun kadar besi dan mangan limbah air asam tambang. Jurnal Teknologi, 13(1), 33-42.

Jaba, Y., Nugroho, W., Oktaviani, R., Devy, S. D., & Pontus, A. J. (2023). Efektivitas Penggunaan Arang Batang Eceng Gondok dalam Penurunan Kadar Logam Besi (Fe) dan Mangan (Mn) pada Air Asam Tambang PT. Anugerah Krida Utama. Jurnal Teknologi Mineral Ft Unmul, 11(2), 42-48.

Jibril, H. B., Salga, S. M., Ahmed, S., & Saddiq, M. (2021). Application of agricultural wastes for the aqueous removal of heavy metals from wastewater. FUDMA Journal of Sciences, 5(3), 231–236. https://doi.org/10.33003/fjs-2021-0503-748

Kerimkulova, А., Азат, С., Manocha, L., Manocha, S., Zhusupova, G., & Mansurov, Z. (2017). Synthesis and application of carbon adsorbents in chromatographic separation of biologically active complexes. Frontiers in Nanoscience and Nanotechnology, 3(2). https://doi.org/10.15761/fnn.1000150

Kujawska, J., & Wasąg, H. (2021). Biochar: A low-cost adsorbent of Methylene Blue from aqueous solutions. Journal of Physics: Conference Series, 1736(1), 012002. https://doi.org/10.1088/1742-6596/1736/1/012002

Kovrov, O. S., & Kulikova, D. (2021). Improvement of the mine water purification efficiency via modified settling tank. Ecological Engineering & Environmental Technology, 23(3), 84–90.

Latorrata, S., Balzarotti, R., Adami, M. I., Marino, B., Mostoni, S., Scotti, R., Bellotto, M., & Cristiani, C. (2021). Wastewater treatment using alkali-activated-based sorbents produced from blast furnace slag. Applied Sciences, 11(7), 2985. https://doi.org/10.3390/app11072985

Liu, L., Li, Y., & Fan, S. (2019). Preparation of KOH and H₃PO₄ modified biochar and its application in methylene blue removal from aqueous solution. Processes, 7(12), 891. https://doi.org/10.3390/pr7120891

Lu, N., Han, J., Wei, Y., Li, G., & Sun, Y. (2020). The heavy metal adsorption capacity of stalk biochar in an aqueous phase. Applied Ecology and Environmental Research, 18(2), 2569–2579. https://doi.org/10.15666/aeer/1802_25692579

Marques, J. F., Lima, A. B., Araújo, N. A. M., & Cadilhe, A. (2012). Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 85(6), 061122.

Miller, B. G. (2010). The effect of coal usage on human health and the environment. In Elsevier eBooks (pp. 85–117). Elsevier BV. https://doi.org/10.1016/B978-1-85617-710-8.00004-2

Miranda, V., Nugroho, W., Magdalena, H., Devy, S. D., & Hasan, H. (2024). Efektivitas Adsorpsi Karbon Aktif Tempurung Kelapa Terhadap Kandungan Besi (Fe) dan Mangan (Mn) Serta pH Pada Pengelolaan Air Asam Tambang Batubara. Jurnal Inovasi Global, 2(2), 214-228.

Mohan, D., Sarswat, A., Ok, Y. S., & Pittman, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. Bioresource Technology, 160, 191–202. https://doi.org/10.1016/j.biortech.2014.01.120

Molahid, V. L. M., Kusin, F. M., Hasan, S. N. M. S., Ramli, N. A. A., & Abdullah, A. M. (2022). CO₂ sequestration through mineral carbonation: Effect of different parameters on carbonation of Fe-rich mine waste materials. Processes, 10(2), 432. https://doi.org/10.3390/pr10020432

Muharani, S., & Purba, E. (2023). Mercury (Hg) Adsorption in Traditional Gold Mining Liquid Waste with Activated Carbon from Coffee Ground. Indonesian Journal of Chemical Science, 12(1), 70-80.

Najmia, H., Mahreda, E. S., Mahyudin, R. P., & Kissinger, K. (2021). Pemanfaatan Arang Aktif Cangkang Kelapa Sawit Teraktivasi H3PO4 untuk Penurunan Kadar Besi (Fe), Mangan (Mn) dan Kondisi pH pada Air Asam Tambang. EnviroScienteae, 17(1), 30-37.

Naseer, A., Jamshaid, A., Hamid, A., Muhammad, N., Ghauri, M., Iqbal, J., Rafiq, S., Shahzad, K., & Shah, N. S. (2018). Lignin and lignin based materials for the removal of heavy metals from wastewater—An overview. Zeitschrift für Physikalische Chemie, 233(3), 315–329. https://doi.org/10.1515/zpch-2018-1209

Nimah, L., Mahfud, M., & Juliastuti, S. R. (2022). Study of Activated Carbon from Coconut Shell Waste to Adsorb Cu and Mn Metals in Acid Mine Drainage. Journal of Fibers and Polymer Composites, 1(1), 34-42.

Noor, I., Priatmadi, B. J., Fatmawati, F., & Kissinger, K. (2020). Pemberian Arang Aktif Dari Cangkang Kelapa Sawit Terhadap Penyerapan Logam Berat Kadmium (Cd) Dan Tembaga (Cu) Pada Air Asam Tambang. EnviroScienteae, 16(2), 216-224.

Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10, 232. https://doi.org/10.1007/s13201-020-01233-z

Ramírez-Rodríguez, T., & de Landa Castillo-Alvarado, F. (2012). Application of the intra-particle diffusion model for activated carbon fibers in an aqueous medium. MRS Online Proceedings Library (OPL), 1373, imrc-1373.

Senthilkumar, R., & Prasad, D. M. R. (2020). Sorption of heavy metals onto biochar. In IntechOpen eBooks. IntechOpen. https://doi.org/10.5772/intechopen.92346

Shane, A., Xu, X., Siame, J., Nguvulu, A., Tena, T. M., Lungu, M., Chinyanta, S., Kawala, J., Bowa, V. M., & Chirambo, B. (2021). Removal of copper from acid mine drainage (AMD) or acid rock drainage (ARD). Journal of Water Resource and Protection, 13(7), 435–446. https://doi.org/10.4236/jwarp.2021.137026

Sihotang, M., Rinanti, A., & Fachrul, M. F. (2021). Heavy metal removal and acid mine drainage neutralization with bioremediation approach. In IOP Conference Series: Earth and Environmental Science (Vol. 894, p. 012041). IOP Publishing. https://doi.org/10.1088/1755-1315/894/1/012041

Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785–1803. https://doi.org/10.1016/j.jece.2014.07.021

Singh, S., Chaudhary, I. J., & Kumar, P. (2019). Utilization of low-cost agricultural waste for removal of toxic metals from environment: A review. International Journal of Scientific Research in Biological Sciences, 6(4), 56–61. https://doi.org/10.26438/ijsrbs/v6i4.5661

Sud, D., Mahajan, G., & Kaur, M. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

Sulaiman, N. S., Amini, M. H. M., Danish, M., Sulaiman, O., & Hashim, R. (2021). Kinetics, Thermodynamics, and Isotherms of Methylene Blue Adsorption Study onto Cassava Stem Activated Carbon. Water, 13(20), 2936. https://doi.org/10.3390/w13202936

Tughyan, M. (2020). Impact of coal mining on environment and natural resources – Causes and potential effects. International Journal of Mining Science, 6(1), 1–6. https://doi.org/10.20431/2454-9460.0601003

Wang, X., Li, X., Peng, L., Han, S., Hao, C., Jiang, C., Wang, H., & Fan, X. (2021). Effective removal of heavy metals from water using porous lignin-based adsorbents. Chemosphere, 279, 130504. https://doi.org/10.1016/j.chemosphere.2021.130504

Wu, F., & Tseng, R. (2005). Preparation of highly porous carbon from fir wood by KOH etching and CO2 gasification for adsorption of dyes and phenols from water. Journal of Colloid and Interface Science, 294(1), 21. https://doi.org/10.1016/j.jcis.2005.06.084

Yulianti, R., Suliestyah, S., Tuheteru, E. J., Palit, C., & Yomaki, C. C. (2024). Studi Isotermal Adsorpsi Karbon Aktif Batubara Dengan Aktivasi Asam Pospat Terhadap Logam Fe Dan Mn Dalam Air Asam Tambang. Jurnal Penelitian Dan Karya Ilmiah Lembaga Penelitian Universitas Trisakti, 276-286.

Yuliusman, Y., Nasruddin, N., Afdhol, M. K., Amiliana, R. A., Hanafi, A., & Rachmanda, B. (2017). Preparation of Activated Carbon from Palm Shells using KOH and ZnCl2 as the Activating Agent. IOP Conference Series Materials Science and Engineering, 180, 12282. https://doi.org/10.1088/1757-899x/180/1/012282

Zhao, H., Ma, S., Zheng, S., Han, S., Yao, F., Wang, X., Wang, S., & Feng, K. (2018). β–cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb²⁺ removal. Journal of Hazardous Materials, 362, 206–216. https://doi.org/10.1016/j.jhazmat.2018.09.027

Zieliński, B., Miądlicki, P., & Przepiórski, J. (2022). Development of activated carbon for removal of pesticides from water: case study. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-25247-6

Published

2025-06-26

Issue

Section

Articles