Application of the VDI 2221 method in the design of 3D printer machines utilizing additive manufacturing technology

Authors

  • Hery Irwan Faculty of Industrial and Manufacturing Engineering and Technology, Universiti Teknikal Malaysia Melaka, 76100 Durian Tunggal, Melaka, Malaysia; Faculty of Engineering, Universitas Riau Kepulauan, Jalan Pahlawan no.99 Batam, 22462 Kepulauan Riau, Indonesia
  • Muhammad Rusydi Fattah Faculty of Engineering, Universitas Riau Kepulauan, Jalan Pahlawan no.99 Batam, 22462 Kepulauan Riau, Indonesia
  • Ryan Dana Gidion Tarigan Faculty of Engineering, Universitas Riau Kepulauan, Jalan Pahlawan no.99 Batam, 22462 Kepulauan Riau, Indonesia
  • Fauzan Maulana Siddiq Aritonang Faculty of Engineering, Universitas Riau Kepulauan, Jalan Pahlawan no.99 Batam, 22462 Kepulauan Riau, Indonesia
  • Edi Sumarya Faculty of Engineering, Universitas Riau Kepulauan, Jalan Pahlawan no.99 Batam, 22462 Kepulauan Riau, Indonesia

DOI:

https://doi.org/10.31315/opsi.v18i1.13477

Keywords:

VDI 2221, 3D printer, Bill of material, Additive manufacturing, Fused deposition modeling

Abstract

In the era of Industry 4.0, digital transformation integrates advanced technologies such as the Internet of Things (IoT), artificial intelligence, and data-driven manufacturing, driving advancements in science and technology. Within this framework, this study focuses on the design and fabrication of a cantilever-type 3D printer aimed at producing a prototype capable of efficient and functional 3D object printing. Additive Manufacturing (AM) technology, particularly Fused Deposition Modeling (FDM), enables the conversion of digital designs into physical products through the layer-by-layer deposition of material. The 3D printer is designed using the VDI 2221 methodology, which encompasses four key phases: task clarification, conceptual design, embodiment design, and detailed design. A key consideration during the design process is the use of filaments derived from plastic bottle waste to mitigate environmental impact. The results identify the Cartesian model variant (Variant 1) as the optimal solution, selected based on functional performance, cost efficiency, and ease of assembly. This machine achieves nozzle temperatures up to 270°C and bed temperatures up to 80°C, with a total production cost of Rp 3,657,000.00. These findings demonstrate the potential of 3D printing technology to advance plastic waste recycling and promote the development of more sustainable 3D printing solutions.

References

[1] S. Dehghan, S. Sattarpanah Karganroudi, S. Echchakoui, and N. Barka, “The integration of additive manufacturing into industry 4.0 and industry 5.0: a bibliometric analysis (trends, opportunities, and challenges),” Jan. 01, 2025, Machines. doi: 10.3390/machines13010062.

[2] M. Khorasani et al., “A review of Industry 4.0 and additive manufacturing synergy,” Aug. 02, 2022, Emerald Group Holdings Ltd. doi: 10.1108/RPJ-08-2021-0194.

[3] Amira. A.Elsonbaty, A. MRashad, Omnia. Y. Abass, T. Y.Abdelghany, and A. MAlfauiomy, “A survey of Fused Deposition Modeling (FDM) technology in 3D printing,” J. Eng. Res. Rep, vol. 26, no. 11, pp. 304–312, Nov. 2024, doi: 10.9734/jerr/2024/v26i111332.

[4] D. Acierno and A. Patti, “Fused deposition modelling (FDM) of thermoplastic-based filaments: process and rheological properties—an overview,” Dec. 01, 2023, Materials. doi: 10.3390/ma16247664.

[5] H. I. Medellin-Castillo and J. Zaragoza-Siqueiros, “Design and manufacturing strategies for fused deposition modelling in additive Manufacturing: A Review,” Dec. 01, 2019, Chinese Mech. Eng. Soc. doi: 10.1186/s10033-019-0368-0.

[6] M. Christiliana, Y. Oktriadi, J. Teknik Mesin, and P. Manufaktur Negeri Bangka Belitung, “Optimasi parameter proses pada 3D printing FDM terhadap akurasi dimensi filament PLA food grade,” J. Tek. Man, vol. 13, no. 01, 2021.

[7] V. Mirón, S. Ferrándiz, D. Juárez, and A. Mengual, “Manufacturing and characterization of 3D printer filament using tailoring materials,” in Proc. Man, Elsevier B.V., 2017, pp. 888–894. doi: 10.1016/j.promfg.2017.09.151.

[8] I. Mashudi, M. Fakhruddin, A. Hardjito, H. Wicaksono, B. Pranoto, and H. I. Firmansyah, “Design of mini grass chopper machine as a solution to the problem of goat food resistance in micro-scale farm,” in Proceedings of the 2022 Annual Technology, Applied Science and Engineering Conference (ATASEC 2022), Atlantis Press International BV, 2022, pp. 195–202. doi: 10.2991/978-94-6463-106-7_18.

[9] A. Basri and M. Fitri, “Perancangan alat uji prestasi pompa menggunakan metode VDI 2221,” J. Teknik Mesin, vol. 10, no. 3, 2021.

[10] A. Basyari and Haftirman, “Metode desain VDI 2221 untuk merancang mesin uji mikro fatik tipe cantilever rotating bending load dengan sistem kontrol human machine interface,” Turbo, Vol 13. No. 2, pp. 513-523, 2024, doi: 10.24127/trb.v13i2.3752.

[11] D. K. Wijaya, B. J. R. Hartono, J. Jazuli, and D. N. Izzhati, “Optimizing product design and development of engine carbon cleaning maintenance tools using reverse engineering and VDI 2222 methods,” OPSI, vol. 17, no. 1, p. 185, Jun. 2024, doi: 10.31315/opsi.v17i1.12032.

[12] O. Ulkir, I. Ertugrul, S. Ersoy, and B. Yağımlı, “The effects of printing temperature on the mechanical properties of 3D-printed acrylonitrile butadiene styrene,” App. Sci. (Switzerland), vol. 14, no. 8, Apr. 2024, doi: 10.3390/app14083376.

[13] W. A. Novarika et al., “Pengaruh parameter proses rapid prototyping dengan teknologi stereolithography terhadap kekerasan spesimen uji,” J. Austenit, vol. 11, no. 2.

[14] A. Ainuddin and T. Suhaebri, “Optimalisasi hasil cetak 3 dimensi creality CR-10 S5 menggunakan ekstruder dengan metode direct drive.” [Online]. Available: https://elektroda.uho.ac.id/

[15] R. Dermawan and A. Wibowo, “Perancangan Mesin Pengupas Kulit Kentang Dengan Metode VDI 2221,” Presisi, vol. 25, no. 1, pp. 66-76, Jan. 2023.

[16] U. Panjaitan, “Perancangan Mesin Pencacah Rumput Multifungsi Dengan Metode VDI 2221,” Presisi, vol. 22, no 1, 2020.

[17] G. Urbaite, “3D printing and additive manufacturing: revolutionizing the production process,” Luminis App. Sci. Eng, vol. 1, no. 1, pp. 73–83, Nov. 2024, doi: 10.69760/lumin.202400001.

[18] G. S. Rubian and M. Fitri, “Peningkatan Ulang Alat Uji Putar Kritis Poros Beban Menggunakan Metode VDI 2221,” Jurnal Unitek, vol. 16, no. 1, June 2023, doi: https://doi.org/10.52072/unitek.v16i1.563

[19] D. R. Lucitasari and F. J. Ramadhani, “Development of palm pool brondonal pick up tools to increase time efficiency by VDI 2221 method,” OPSI, vol. 17, no. 2, p. 421, Dec. 2024, doi: 10.31315/opsi.v17i2.11793.

[20] H. Irwan, M. D. N. A. Rahman, Z. B. Ebrahim, R. A. C. Leuveano, and N. R. Dzakiyullah, “The optimization inventory process on identical machine job shop with multiple setups using genetic algorithm,” Nanotechnol Percept, vol. 20, no. S2, pp. 22–35, 2024, doi: 10.62441/nano-ntp.v20iS2.3.

[21] T. T. Suhariyanto, R. A. C. Leuveano, and S. Suhariyanto, “Analisis manajemen organisasi dan sumber daya manusia (studi kasus pada industri velg mobil),” OPSI, vol. 13, no. 1, p. 25, Jun. 2020, doi: 10.31315/opsi.v13i1.3470.

[22] R. Dermawan and A. Wibowo, “Perancangan mesin pengupas kulit kentang dengan metode VDI 2221,” 2023.

[23] D. G. H. Adoe, D. B. N. Riwu, and F. B. Husein, “Rancang bangun alat pirolisis reaktor tabung bertingkat untuk daur ulang sampah plastik polypropylene (pp) dengan menggunakan metode vdi 2221,” Lontar Jurnal Teknik Mesin Undana, vol. 9, no. 1, pp. 90-100, April 2022, doi: https://doi.org/10.35508/ljtmu.v9i01.8063

[24] K. Suhada, R. M. Heryanto, W. Halim, and T. P. Ismail, “Perancangan kursi roda terapi untuk penderita stroke,” OPSI, vol. 16, no. 1, p. 26, Jun. 2023, doi: 10.31315/opsi.v16i1.9111.

[25] W. Handayani, “Analisis perencanaan bahan baku paving block dengan metode material requirement planning di pt. pesona arnos beton,” Jurnal Pendidikan Ekonomi (JURKAMI), vol. 7, no. 2, pp. 176-184, 2022, doi: https://doi.org/10.31932/jpe.v7i2.1617

[26] B. N. Sari, O. Komarudin, T. N. Padilah, and ..., “Bill of Material (BOM) pada sistem inventori kawasan Berikat untuk pelacakan material movement,” ILKOM Jurnal, vol. 10, no. 3, pp. 2018, doi: https://doi.org/10.33096/ilkom.v10i3.381.323-330

[27] A. Ma’ruf, R. A. C. Leuveano, and R. Utama, “Product design cost estimation for make-to-order industry: a machine learning approach,” Emerging Sci. J., vol. 8, no. 3, pp. 1167–1183, Jun. 2024, doi: 10.28991/ESJ-2024-08-03-022.

[28] A. Ma’ruf, A. A. R. Nasution, and R. A. C. Leuveano, “Machine learning approach for early assembly design cost estimation: a case from make-to-order manufacturing industry,” Int. J. of Tech., vol. 15, no. 4, pp. 1037–1047, 2024, doi: 10.14716/ijtech.v15i4.5675.

Downloads

Published

2025-06-30