Optimization of stock price prediction of PT Aneka Tambang Tbk (ANTM) using Long Short-Term Memory
DOI:
https://doi.org/10.31315/telematika.v22i1.10921Keywords:
LSTM, ANTM, Stock, RMSE, Stock price prediction,Abstract
Purpose: Develop a machine learning model to predict stock market activity by finding the Root Mean Squared Error (RMSE) value.
Design/methodology/approach: LSTM (Long Short-Term Memory) is one of the machine learning techniques that can be used to anticipate traffic in realtime. Using this method can be used to analyze stock market activity that has time series data.
Findings/result: This research obtained a Root Mean Squared Error (RMSE) value of 43.32.
Originality/value/state of the art: By using the same machine learning method as the previous research, namely LSTM. The research provides more efficient results.References
M. Abdul Dwiyanto Suyudi, E. C. Djamal, A. Maspupah Jurusan Informatika, and F. Sains dan Informatika Universitas Jenderal Achmad Yani Cimahi, “Prediksi Harga Saham menggunakan Metode Recurrent Neural Network,” Semin. Nas. Apl. Teknol. Inf., pp. 1907–5022, 2019.
S. Masriyah, H. Hariyanto, and N. Wahyuningsih, “Prediksi Indeks Harga Saham Menggunakan Model Hibrida Recurrent Neural Network Dan Genetic Algorithm,” J. Sains dan Seni ITS, vol. 11, no. 2, 2022, doi: 10.12962/j23373520.v11i2.78431.
M. Diqi, M. E. Hiswati, and A. S. Nur, “StockGAN: robust stock price prediction using GAN algorithm,” Int. J. Inf. Technol., vol. 14, no. 5, pp. 2309–2315, 2022, doi: 10.1007/s41870-022-00929-6.
R. Julian and M. R. Pribadi, “Peramalan Harga Saham Pertambangan Pada Bursa Efek Indonesia (BEI) Menggunakan Long Short Term Memory (LSTM),” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, pp. 1570–1580, 2021, doi: 10.35957/jatisi.v8i3.1159.
A. Mahmoodi, L. Hashemi, M. Jasemi, S. Mehraban, J. Laliberté, and R. C. Millar, “A developed stock price forecasting model using support vector machine combined with metaheuristic algorithms,” OPSEARCH, vol. 60, no. 1, pp. 59–86, 2023, doi: 10.1007/s12597-022-00608-x.
Y. Shi, Y. Wang, Y. Qu, and Z. Chen, “Integrated GCN-LSTM stock prices movement prediction based on knowledge-incorporated graphs construction,” Int. J. Mach. Learn. Cybern., pp. 1–16, Apr. 2023, doi: 10.1007/s13042-023-01817-6.
J. Zhao, D. Zeng, S. Liang, H. Kang, and Q. Liu, “Prediction model for stock price trend based on recurrent neural network,” J. Ambient Intell. Humaniz. Comput., vol. 12, no. 1, pp. 745–753, 2021, doi: 10.1007/s12652-020-02057-0.
R. Kumar, “Cerebral LSTM: A Better Alternative for Single- and Multi-Stacked LSTM Cell-Based RNNs,” SN Comput. Sci., vol. 1, no. 2, p. 85, 2020, doi: 10.1007/s42979-020-0101-1.
Y. Ramdhani and A. Mubarok, “Analisis Time Series Prediksi Penutupan Harga Saham Antm.Jk Dengan Algoritma SVM Model Regresi,” J. Responsif Ris. Sains dan Inform., vol. 1, no. 1, pp. 77–82, 2019.
L. Alfat, H. Hermawan, A. Rustandiputri, R. Inzhagi, and R. Tandjilal, “Prediksi Saham PT. Aneka Tambang Tbk. dengan K-Nearest Neighbors,” JSAI (Journal Sci. Appl. Informatics), vol. 5, no. 3, pp. 236–243, 2022, doi: 10.36085/jsai.v5i3.3975.
K. Kumar and M. T. U. Haider, “Enhanced Prediction of Intra-day Stock Market Using Metaheuristic Optimization on RNN–LSTM Network,” New Gener. Comput., vol. 39, no. 1, pp. 231–272, 2021, doi: 10.1007/s00354-020-00104-0.
H. Putra and N. Ulfa Walmi, “Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 100–107, 2020, doi: 10.25077/teknosi.v6i2.2020.100-107.
N. Yudistira, P. Studi, T. Informatika, F. I. Komputer, U. Brawijaya, and P. Korespondensi, “Prediksi harga saham indosat menggunakan algoritma lstm,” pp. 1–6, 2021.
M. KHADAFI, “Dataset Saham Indonesia / Indonesia Stock Dataset,” 2023. https://www.kaggle.com/datasets/muamkh/ihsgstockdata (accessed Apr. 29, 2023).
R. Desai, “Top 10 Python Libraries for Data Science,” 2019. https://towardsdatascience.com/top-10-python-libraries-for-data-science-cd82294ec266 (accessed Jun. 01, 2023).
V. Kumar, “Frequently used functions of NumPy, Pandas, Matplotlib, Seaborn, Scikit-Learn, Tensorflow and Keras,” 2019. https://vivekjaglan.medium.com/frequently-used-functions-of-numpy-pandas-matplotlib-seaborn-scikit-learn-tensorflow-and-keras-a9cb04e2339f (accessed Jun. 01, 2023).
J. Brownlee, “Frequently used functions of NumPy, Pandas, Matplotlib, Seaborn, Scikit-Learn, Tensorflow and Keras,” 2022. https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/#:~:text=Keras is a powerful and,a few lines of code (accessed Jun. 01, 2023).
J. Brownlee, “Your First Deep Learning Project in Python with Keras Step-by-Step,” 2022. https://machinelearningmastery.com/tutorial-first-neural-network-python-keras/#:~:text=Keras is a powerful and,a few lines of code. (accessed Jun. 01, 2023).
B. Prijono, “Pengenalan Long Short Term Memory (LSTM) dan Gated Recurrent Unit (GRU) – RNN Bagian 2,” 2018. https://indoml.com/2018/04/13/pengenalan-long-short-term-memory-lstm-dan-gated-recurrent-unit-gru-rnn-bagian-2/ (accessed Jun. 14, 2023).
L. Wiranda and M. Sadikin, “PENERAPAN LONG SHORT TERM MEMORY PADA DATA TIME SERIES UNTUK MEMPREDIKSI PENJUALAN PRODUK PT. METISKA FARMA,” J. Nas. Pendidik. Tek. Inform. JANAPATI, vol. 8, no. 3, pp. 184–196, 2020, doi: 10.23887/janapati.v8i3.19139.
T. L. Nikmah, M. Z. Ammar, and Y. R. Allatif, “Comparison of LSTM, SVM, and naive bayes for classifying sexual harassment tweets,” J. Soft Comput. Explor., vol. 3, no. 2, pp. 131–137, 2022, doi: 10.52465/joscex.v3i2.85.
E. M. C. Wattimena, A. Annisa, and I. S. Sitanggang, “CO and PM10 Prediction Model based on Air Quality Index Considering Meteorological Factors in DKI Jakarta using LSTM,” Sci. J. Informatics, vol. 9, no. 2, pp. 123–132, 2022, doi: 10.15294/sji.v9i2.33791.
G. Bathla, R. Rani, and H. Aggarwal, “Stocks of year 2020: prediction of high variations in stock prices using LSTM,” Multimed. Tools Appl., vol. 82, no. 7, pp. 9727–9743, 2023, doi: 10.1007/s11042-022-12390-5.
R. Wulandari, B. Surarso, Irawanto, and F. Farikhin., “The Forecasting of Palm Oil Based on Fuzzy Time Series-Two Factor,” J. Soft Comput. Explor. 2, vol. 1, pp. 11–16, 2021.
L. Setiyani and W. H. Utomo, “Arabica Coffee Price Prediction Using the Long Short Term Memory Network ( LSTM ) Algorithm,” vol. 10, no. 3, pp. 287–296, 2024, doi: 10.15294/sji.v10i3.44162.
A. Purwanto and L. P. Manik, “Software Effort Estimation Using Logarithmic Fuzzy Preference Programming and Least Squares Support Vector Machines,” Sci. J. Informatics, vol. 10, no. 1, pp. 1–12, 2022, doi: 10.15294/sji.v10i1.39865.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Telematika : Jurnal Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




