Performance Analysis and Accuracy of Machine Learning Algorithms for Heart Disease Prediction
DOI:
https://doi.org/10.31315/telematika.v22i3.14022Keywords:
Heart Disease Prediction, K-Nearest Neighbors, Logistic Regression, Neural Network, Random ForestAbstract
Purpose: This research aims to analyze the performance and accuracy of machine learning algorithms in predicting heart disease, which is a cause of death throughout the world.
Design/methodology/approach: The algorithms analyzed include Logistic Regression, Naive Bayes, Support Vector Machine, K-Nearest Neighbors, Decision Tree, Random Forest, XGBoost, and Neural Network. A publicly available dataset containing patients' medical records was utilized, with the methodology encompassing data collection, Exploratory Data Analysis (EDA), model training, and performance evaluation.
Findings/result: The results indicate that the Random Forest algorithm achieved the highest accuracy with an accuracy of 90.16%, followed by Logistic Regression and Naive Bayes with accuracies of 85.25%. The K-Nearest Neighbors algorithm exhibits the lowest accuracy at 67.21%.
Originality/value/state of the art: This research highlights the advantages of certain machine learning algorithms in predicting heart disease and contributes knowledge to early detection technology in the health sector.
References
K. Sumwiza, C. Twizere, G. Rushingabigwi, P. Bakunzibake, and P. Bamurigire, “Enhanced cardiovascular disease prediction model using random forest algorithm,” Inform Med Unlocked, vol. 41, Jan. 2023, doi: 10.1016/j.imu.2023.101316.
M. Ozcan and S. Peker, “A classification and regression tree algorithm for heart disease modeling and prediction,” Healthcare Analytics, vol. 3, Nov. 2023, doi: 10.1016/j.health.2022.100130.
M. P. Behera, A. Sarangi, D. Mishra, and S. K. Sarangi, “A Hybrid Machine Learning algorithm for Heart and Liver Disease Prediction Using Modified Particle Swarm Optimization with Support Vector Machine,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 818–827. doi: 10.1016/j.procs.2023.01.062.
D. J. Park, M. W. Park, H. Lee, Y. J. Kim, Y. Kim, and Y. H. Park, “Development of machine learning model for diagnostic disease prediction based on laboratory tests,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-87171-5.
A. G, B. Ganesh, A. Ganesh, C. Srinivas, Dhanraj, and K. Mensinkal, “Logistic regression technique for prediction of cardiovascular disease,” Global Transitions Proceedings, vol. 3, no. 1, pp. 127–130, Jun. 2022, doi: 10.1016/j.gltp.2022.04.008.
Y. Sandhya, “Prediction of Heart Diseases using Support Vector Machine,” vol. 8, [Online]. Available: www.ijraset.com
R. YILMAZ and F. H. YAĞIN, “Early Detection of Coronary Heart Disease Based on Machine Learning Methods,” Medical Records, vol. 4, no. 1, pp. 1–6, Jan. 2022, doi: 10.37990/medr.1011924.
K. M. Almustafa, “Prediction of heart disease and classifiers’ sensitivity analysis,” BMC Bioinformatics, vol. 21, no. 1, Jul. 2020, doi: 10.1186/s12859-020-03626-y.
P. S. Asih, Y. Azhar, G. W. Wicaksono, and D. R. Akbi, “Interpretable Machine Learning Model For Heart Disease Prediction,” in Procedia Computer Science, Elsevier B.V., 2023, pp. 439–445. doi: 10.1016/j.procs.2023.10.544.
R. Islam, A. Sultana, and M. N. Tuhin, “A comparative analysis of machine learning algorithms with tree-structured parzen estimator for liver disease prediction,” Healthcare Analytics, vol. 6, Dec. 2024, doi: 10.1016/j.health.2024.100358.
A. Arifuddin, G. S. Buana, R. A. Vinarti, and A. Djunaidy, “Performance Comparison of Decision Tree and Support Vector Machine Algorithms for Heart Failure Prediction,” in Procedia Computer Science, Elsevier B.V., 2024, pp. 628–636. doi: 10.1016/j.procs.2024.03.048.
H. Willa Dhany and F. Izhari, “Journal of Intelligent Decision Support System (IDSS) Exploratory Data Analysis (EDA) methods for healthcare classification,” 2023.
M. K. Uçar, M. Nour, H. Sindi, and K. Polat, “The Effect of Training and Testing Process on Machine Learning in Biomedical Datasets,” Math Probl Eng, vol. 2020, 2020, doi: 10.1155/2020/2836236.
K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis, “Machine learning applications in cancer prognosis and prediction,” 2015, Elsevier B.V. doi: 10.1016/j.csbj.2014.11.005.
H. M and S. M.N, “A Review on Evaluation Metrics for Data Classification Evaluations,” International Journal of Data Mining & Knowledge Management Process, vol. 5, no. 2, pp. 01–11, Mar. 2015, doi: 10.5121/ijdkp.2015.5201.
M. Napiah and S. Heristian, “Perbandingan Algoritma Machine Learning pada Klasifikasi Penyakit Jantung.” [Online]. Available: http://ejournal.bsi.ac.id/ejurnal/index.php/infortech46
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Telematika : Jurnal Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




