Analysis of the Effectiveness of Data Warehousing in Management Information Systems Using the Neural Networks Method

Authors

  • Muliani Ginting Universitas Siliwangi
  • Alam Rahmatulloh

DOI:

https://doi.org/10.31315/telematika.v22i3.14027

Keywords:

Data Warehousing, Data Preprocessing, Management Information System, Neural Network, Overfitting

Abstract

Purpose: The purpose of this research is to investigate the effectiveness of data warehousing and the application of Neural Networks methods in analyzing bicycle travel app user data, with a focus on enhancing the annual membership of app users in North America.
Design/methodology/approach: This study utilizes a dataset that includes membership and usage data from relevant bicycle travel apps. It involves comparing the performance of different Neural Networks architectures, such as Feedforward Neural Networks, Convolutional Neural Networks (CNN), and other suitable models, to evaluate their effectiveness in predicting user membership.
Findings/result: The analysis results demonstrate that the implementation of Neural Networks can improve prediction accuracy, with the most effective model achieving 76.03% accuracy. The research also highlights the importance of preprocessing steps, such as data normalization and transformation, in contributing significantly to model performance. However, challenges such as overfitting were identified, suggesting the need for further testing with model and parameter variations.
Originality/value/state of the art: This research provides valuable insights for application developers and policy makers, helping them create data-driven strategies to improve the bicycle travel management information system. It also supports efforts to sustainably grow user membership. The study contributes to the field by exploring the practical application of Neural Networks for data analysis in the context of bicycle travel management, filling a gap in current research on effective predictive models for user membership growth.

References

F. Fahrianto, “Data Warehouse dan Data Mining,” GAES-PACE Book Publisher, p. 193, 2016, [Online]. Available: https://books.google.com/books?hl=en%5C&lr=%5C&id=3bGpEAAAQBAJ%5C&oi=fnd%5C&pg=PA1%5C&dq=penggunaan+teknologi+kecerdasan+buatan+dalam+pengembangan+sistem+informasi+manajemen+pergudangan%5C&ots=_zK9UNdFoq%5C&sig=rO00pAHE3rVs77a1pf9aZTn2_yE

T. Pipit Muliyah, Dyah Aminatun, Sukma Septian Nasution, Tommy Hastomo, Setiana Sri Wahyuni Sitepu, 済無No Title No Title No Title, vol. 7, no. 2. 2020.

D. Alexander and I. N. Pujawan, “Perancangan Sistem Warehouse Berbasis Teknologi Ocr Untuk Meningkatkan Efektivitas Dan Efisiensi,” Jurnal Ilmiah Teknik Industri, vol. 12, no. 1, pp. 1–11, 2024, doi: 10.24912/jitiuntar.v12i1.28100.

M. Made Hanindia Prami Swari, Fawwaz Ali Akbar, “Data Warehouse Implementation Techniques In Data Processing (Case Study Data Sales at PT Spirit Sejahtera Bersama),” Journal Mantik, vol. 3, no. 3, pp. 135–142, 2019, [Online]. Available: https://iocscience.org/ejournal/index.php/mantik/article/view/400

T. F. Efendi and M. Krisanty, “Warehouse Data System Analysis PT. Kanaan Global Indonesia,” International Journal of Computer and Information System (IJCIS), vol. 1, no. 3, pp. 70–73, 2020, doi: 10.29040/ijcis.v1i2.26.

R. Pratama, R. Herdiana, R. Hamonangan, and S. Anwar, “Analisis Prediksi Kelulusan Mahasiswa Menggunakan Metode Artificial Neural Network,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 8, no. 1, pp. 687–693, 2024, doi: 10.36040/jati.v8i1.8762.

S. P. Azzahra, Y. A. Apriyanto, and A. Wijaya, “Analisis Dan Perancangan Data Warehouse Untuk Pengelolaan Stok Barang Pada Cv Aneka Artha Niaga,” Journal Of Informatics And Busisnes, vol. 01, no. 03, pp. 103–112, 2023.

A. A. Yulianto, “Extract Transform Load (ETL) Process in Distributed Database Academic Data Warehouse,” APTIKOM Journal on Computer Science and Information Technologies, vol. 4, no. 2, pp. 61–68, 2019, doi: 10.11591/aptikom.j.csit.36.

M. Hilman and D. Djamaludin, “Analisis Faktor Optimalisasi Proses Etl Pada Data Warehouse Sebagai Pendukung Pengambilan Keputusan Management Dengan Business Intelligence,” Faktor Exacta, vol. 11, no. 1, p. 24, 2018, doi: 10.30998/faktorexacta.v11i1.2325.

N. T. S. Saptadi and H. C. Marwi, “Rancang Bangun Model Layanan Fungsi Menggunakan Data Warehouse Dalam Penyusunan Blue Print Rumah Sakit,” Researchgate.Net, no. November 2014, 2020, [Online]. Available: https://www.researchgate.net/profile/Norbertus-Saptadi/publication/332079934_Rancang_Bangun_Model_Layanan_Fungsi_Menggunakan_Data_Warehouse_Dalam_Penyusunan_Blueprint_Rumah_Sakit_November_2014/links/5c9e354d299bf1116950040a/Rancang-Bangun-Model-Layanan-Fu

S. Sucipto, S. Sucipto, and A. Nugroho, “Analisis Data Warehouse Pada Perpustakaan Man X Untuk Efisiensi Manajemen,” Fountain of Informatics Journal, vol. 5, no. 3, p. 17, 2020, doi: 10.21111/fij.v5i3.4988.

m t hidayatullah and s r asroni, “Penerapan Algoritma Neural Network Untuk Memprediksi Kelayakan Calon Asisten Dosen,” Repository.Umy.Ac.Id, no. XXX, 2015, [Online]. Available: http://repository.umy.ac.id/bitstream/handle/123456789/30148/g. bab 3.pdf?sequence=7&isallowed=y

M. Hendrawaty, “Analisis dan Perancangan Data Warehouse pada PT. Polaris Sapta Manggala,” Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya Lubuklinggau, vol. 6, no. 1, pp. 8–16, 2024, doi: 10.52303/jb.v6i1.137.

S. M. Qibtiyah, A. Nugroho, and R. Firliana, “Sistem Informasi Pengolahan Data Peminjaman Buku di Taman Baca Dengan Menggunakan Data Warehouse,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 5, no. 2, pp. 68–75, 2022, doi: 10.55338/jikomsi.v5i2.310.

S. Wahono and H. Ali, “Peranan Data Warehouse, Software Dan Brainware Terhadap Pengambilan Keputusan (Literature Review Executive Support Sistem for Business),” Jurnal Ekonomi Manajemen Sistem Informasi, vol. 3, no. 2, pp. 225–239, 2021, doi: 10.31933/jemsi.v3i2.781.

Downloads

Published

2025-11-24

How to Cite

Ginting, M., & Rahmatulloh, A. (2025). Analysis of the Effectiveness of Data Warehousing in Management Information Systems Using the Neural Networks Method. Telematika: Jurnal Telematika Dan Teknologi Informasi, 22(3), 86–97. https://doi.org/10.31315/telematika.v22i3.14027