Implementation of Forgy Initialization and K-Means++ Algorithms in the K-Means Clustering Method for Sales Data Analysis of Dazzle Store
DOI:
https://doi.org/10.31315/telematika.v22i2.14468Keywords:
Forgy Initialization, Kmeans , silhouette coefficient, Kmeans ClusteringAbstract
Objective: To determine the results of K-Means Clustering calculations by applying K-Means++ and Forgy initialization methods in analyzing sales data at Dazzle accessory store, as well as to identify the optimal number of clusters using the silhouette coefficient.
Method: This study implements the Forgy initialization and K-Means++ algorithms in the K-Means Clustering method, along with an evaluation of the optimal number of clusters using the silhouette coefficient method.
Results: The application of Forgy initialization and K-Means++ successfully improved clustering outcomes more optimally compared to the pure initialization method. The highest silhouette coefficient evaluation score was 0.9232095222373023 for K-Means++ and 0.8822890619277 for Forgy initialization. This result is clearly better than the pure initialization method, which only achieved a score of 0.8816344025002508.
State of the Art: This study builds upon previous research. The innovation lies in the implementation of a combination of K-Means Clustering with Forgy initialization and K-Means++ initialization methods.References
Y. Dharma Putra, M. Sudarma, and I. B. A. Swamardika, “Clustering History Data Penjualan Menggunakan Algoritma K-Means,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 195, Dec. 2021, doi: 10.24843/mite.2021.v20i02.p03.
D. Anggarwati, O. Nurdiawan, I. Ali, and D. A. Kurnia, “Penerapan Algoritma K-Means Dalam Prediksi Penjualan Karoseri,” vol. 1, no. 2, pp. 58–62, 2021.
S. Butsianto and N. T. Mayangwulan, “Penerapan Data Mining Untuk Prediksi Penjualan Mobil Menggunakan Metode K-Means Clustering,” 2020.
D. Ayu, I. C. Dewi, and K. Pramita, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” 2019.
Qomariyah and M. U. Siregar, “Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 91–99, 2022, doi: 10.14421/jiska.2022.7.2.91-99.
A. Rizal, D. Candra, R. Novitasari, and M. Hafiyusholeh, “Pengelompokkan Karyawan Berdasarkan Kesalehan Menggunakan Perbandingan Fuzzy C-Means , K-Means , dan Probabilistic Distance Clustering,” vol. 11, no. 2, pp. 69–77, 2022, doi: 10.14421/fourier.2022.112.69-77.
P. R. N. Saputra and A. Chusyairi, “Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 5–12, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Telematika : Jurnal Informatika dan Teknologi Informasi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




