Implementation of Forgy Initialization and K-Means++ Algorithms in the K-Means Clustering Method for Sales Data Analysis of Dazzle Store

Authors

  • Muhamad Hilmi Abdillah Universitas Pembangunan Nasioanl "Veteran" Yogyakarta

DOI:

https://doi.org/10.31315/telematika.v22i2.14468

Keywords:

Forgy Initialization, Kmeans , silhouette coefficient, Kmeans Clustering

Abstract

Objective: To determine the results of K-Means Clustering calculations by applying K-Means++ and Forgy initialization methods in analyzing sales data at Dazzle accessory store, as well as to identify the optimal number of clusters using the silhouette coefficient.

Method: This study implements the Forgy initialization and K-Means++ algorithms in the K-Means Clustering method, along with an evaluation of the optimal number of clusters using the silhouette coefficient method.

Results: The application of Forgy initialization and K-Means++ successfully improved clustering outcomes more optimally compared to the pure initialization method. The highest silhouette coefficient evaluation score was 0.9232095222373023 for K-Means++ and 0.8822890619277 for Forgy initialization. This result is clearly better than the pure initialization method, which only achieved a score of 0.8816344025002508.

State of the Art: This study builds upon previous research. The innovation lies in the implementation of a combination of K-Means Clustering with Forgy initialization and K-Means++ initialization methods.

References

Y. Dharma Putra, M. Sudarma, and I. B. A. Swamardika, “Clustering History Data Penjualan Menggunakan Algoritma K-Means,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 2, p. 195, Dec. 2021, doi: 10.24843/mite.2021.v20i02.p03.

D. Anggarwati, O. Nurdiawan, I. Ali, and D. A. Kurnia, “Penerapan Algoritma K-Means Dalam Prediksi Penjualan Karoseri,” vol. 1, no. 2, pp. 58–62, 2021.

S. Butsianto and N. T. Mayangwulan, “Penerapan Data Mining Untuk Prediksi Penjualan Mobil Menggunakan Metode K-Means Clustering,” 2020.

D. Ayu, I. C. Dewi, and K. Pramita, “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali,” 2019.

Qomariyah and M. U. Siregar, “Comparative Study of K-Means Clustering Algorithm and K-Medoids Clustering in Student Data Clustering,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 7, no. 2, pp. 91–99, 2022, doi: 10.14421/jiska.2022.7.2.91-99.

A. Rizal, D. Candra, R. Novitasari, and M. Hafiyusholeh, “Pengelompokkan Karyawan Berdasarkan Kesalehan Menggunakan Perbandingan Fuzzy C-Means , K-Means , dan Probabilistic Distance Clustering,” vol. 11, no. 2, pp. 69–77, 2022, doi: 10.14421/fourier.2022.112.69-77.

P. R. N. Saputra and A. Chusyairi, “Perbandingan Metode Clustering dalam Pengelompokan Data Puskesmas,” J. Resti (Rekayasa Sist. dan Teknol. Informasi), vol. 1, no. 10, pp. 5–12, 2021.

Downloads

Published

2025-11-17

How to Cite

Abdillah, M. H. (2025). Implementation of Forgy Initialization and K-Means++ Algorithms in the K-Means Clustering Method for Sales Data Analysis of Dazzle Store. Telematika: Jurnal Telematika Dan Teknologi Informasi, 22(2). https://doi.org/10.31315/telematika.v22i2.14468