Dynamic modeling in environmental planning: A global synthesis of research addressing urban air quality

Authors

  • Dian Hudawan Santoso Doctoral Program in Environmental Science, The Graduate School of Universitas Gadjah Mada, Yogyakarta, Indonesia; Department of Environmental Engineering, Faculty of Mineral Technology and Energy, Universitas Pembangunan Nasional Veteran Yogyakarta, Yogyakarta, Indonesia
  • Sri Juari Santosa Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Andung Bayu Sekaranom Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia

DOI:

https://doi.org/10.31315/opsi.v18i2.15177

Keywords:

Air pollution, System dynamics, Systematic literature review, Bibliometric

Abstract

This research constitutes bibliometric analysis about the utilization of System Dynamics (SD) in mitigating air pollution. This project aims to investigate the use of system dynamics models in simulating and assessing urban transportation regulations, industrial emissions, and the incorporation of cleaner technology. The applied methodology encompasses a synthesis of current studies and the execution of bibliometric analysis to discern trends, prominent academics, and the most impactful papers in this domain. An exhaustive analysis of the current literature uncovered several significant findings. Investments in public transportation, the introduction of fuel taxes, and the advancement and deployment of sophisticated car technologies are recognized as essential solutions for mitigating air pollution. Case studies from places such Greater Cairo, Kuwait, Tehran, and Mexico City illustrate the efficacy of SD in forecasting long-term environmental consequences and facilitating adaptive policy.This research primarily contributes to the visualisation of the intellectual framework of the research domain, the identification of keyword clusters, and the elucidation of links between topics that may have previously lacked obvious mapping.  This research addresses a methodological deficiency by clearly illustrating how the combination of quantitative bibliometric analysis and systematic review can enhance comprehension of the developmental dynamics within a scientific subject.

References

[1] N. Shahsavari-Pour, S. Bahador, A. Heydari, and A. Fekih, “Analyzing Tehran’s Air Pollution Using System Dynamics Approach,” Sustain. Switz., vol. 14, no. 3, 2022, doi: 10.3390/su14031181.

[2] S. Jia, “Collaborative Strategies and Multiple Performances of Haze Pollution Control: A Case Study of Motor Vehicles,” Arab. J. Sci. Eng., vol. 46, no. 2, pp. 1631–1646, 2021, doi: 10.1007/s13369-020-04846-3.

[3] J. Chen et al., “Preparation of Asymmetric Tubular Co‐SiC Catalytic Membrane for Synergistic Removal of PM2.5, NO, and Toluene,” Aiche J., vol. 70, no. 3, 2023, doi: 10.1002/aic.18325.

[4] Y. Tian, L. Ren, H. Wang, T. Li, Y. Yuan, and Y. Zhang, “Impact of AIS Data Thinning on Ship Air Pollutant Emissions Inventories,” Atmosphere, vol. 13, no. 7, 2022, doi: 10.3390/atmos13071135.

[5] T. Ercan, N. C. Onat, N. Keya, O. Tatari, N. Eluru, and M. Kucukvar, “Autonomous electric vehicles can reduce carbon emissions and air pollution in cities,” Transp. Res. Part Transp. Environ., vol. 112, 2022, doi: 10.1016/j.trd.2022.103472.

[6] C. Moll, P. Plötz, K. Hadwich, and M. Wietschel, “Are battery-electric trucks for 24-hour delivery the future of city logistics?-A german case study,” World Electr. Veh. J., vol. 11, no. 1, 2020, doi: 10.3390/WEVJ11010016.

[7] X. Guo, D. Niu, and B. Xiao, “Assessment of air-pollution control policy’s impact on China’s PV Power: A system dynamics analysis,” Energies, vol. 9, no. 5, 2016, doi: 10.3390/en9050336.

[8] P. Chica-Morales, V. F. Muñoz, and A. J. Domenech, “System dynamics as ex ante impact assessment tool in international development cooperation: Study case of urban sustainability policies in Darkhan, Mongolia,” Sustain. Switz., vol. 13, no. 8, 2021, doi: 10.3390/su13084595.

[9] T. Talitha and R. Berliyana, “Simulation Model of Production System Using Dynamic System Approach to Increase Production Capacity Tofu Factory,” OPSI, vol. 15, no. 2, p. 228, Dec. 2022, doi: 10.31315/opsi.v15i2.8059.

[10] I. Berlianty, I. Soejanto, I. Titisariwati, F. E. A. Putra, W. T. Utami, and M. K. Insani, “A hybrid Genetic Algorithm and Fuzzy Logic approach to ergonomic design of workstations in metal casting operations,” OPSI, vol. 17, no. 2, p. 403, Dec. 2024, doi: 10.31315/opsi.v17i2.13943.

[11] Y. D. Astanti, R. N. Putri, and L. Nafisah, “Simulasi Sistem Dinamis Bahan Pangan Tambahan Guna Pemenuhan Kebutuhan Konsumen dan Peningkatan Keuntungan Petani,” OPSI, vol. 15, no. 1, p. 1, June 2022, doi: 10.31315/opsi.v15i1.5403.

[12] S. D. Rahayu, D. R. Lucitasari, and S. Sutrisno, “Penentuan Strategi Bersaing Berdasarkan Simulasi Sistem Dinamis ( Studi Kasus di Industri Kecil Intan Rahmadhani Yogyakarta ),” OPSI, vol. 11, no. 1, p. 58, May 2018, doi: 10.31315/opsi.v11i1.2333.

[13] B. Güneralp and K. C. Seto, “Environmental impacts of urban growth from an integrated dynamic perspective: A case study of Shenzhen, South China,” Glob. Environ. Change, vol. 18, no. 4, pp. 720–735, 2008, doi: 10.1016/j.gloenvcha.2008.07.004.

[14] A. O. Moeis, F. Desriani, A. R. Destyanto, T. Y. Zagloel, A. Hidayatno, and A. Sutrisno, “Sustainability assessment of the tanjung priok port cluster,” Int. J. Technol., vol. 11, no. 2, pp. 353–363, 2020, doi: 10.14716/ijtech.v11i2.3894.

[15] X. Guo, Y. Wei, and J. Yuan, “Will the Steam Coal Price Rebound under the New Economy Normalcy in China?,” Energies, vol. 9, no. 9, 2016, doi: 10.3390/en9090751.

[16] N. Chalise, P. Kumar, P. Priyadarshini, and G. N. Yadama, “Dynamics of sustained use and abandonment of clean cooking systems: Lessons from rural India,” Environ. Res. Lett., vol. 13, no. 3, 2018, doi: 10.1088/1748-9326/aab0af.

[17] S. Jia, Y. Li, and T. Fang, “Can driving-restriction policies alleviate traffic congestion? A case study in Beijing, China,” Clean Technol. Environ. Policy, vol. 24, no. 9, pp. 2931–2946, 2022, doi: 10.1007/s10098-022-02377-z.

[18] Y. Zhou and J. Zhou, “Urban atmospheric environmental capacity and atmospheric environmental carrying capacity constrained by GDP–PM2.5,” Ecol. Indic., vol. 73, pp. 637–652, 2017, doi: 10.1016/j.ecolind.2016.10.015.

[19] G. Huang et al., “Large scale air pollution prediction with deep convolutional networks,” Sci. China Inf. Sci., vol. 64, no. 9, 2021, doi: 10.1007/s11432-020-2951-1.

[20] A. Kunche and B. Mielczarek, “Using Simulation Modelling for Designing Optimal Strategies of Fuel Mix to Comply for SOx and NOx Emission Standards in Industrial Boilers,” Energies, vol. 16, no. 1, 2023, doi: 10.3390/en16010149.

[21] Y. P. Mulyani, “The Forty-year History of Revenue Management: Bibliometric Analysis,” OPSI, vol. 14, no. 1, p. 38, June 2021, doi: 10.31315/opsi.v14i1.4677.

[22] S. D. P. Núñez Arroba, L. K. Sailema López, and G. A. Zúñiga Cárdenas, “Analysis of polycystic ovary syndrome and infertility using PRISMA 2020 literature review,” Data Metadata, vol. 3, Dec. 2024, doi: 10.56294/dm2024.239.

[23] M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” Int. J. Surg., vol. 88, p. 105906, Apr. 2021, doi: 10.1016/j.ijsu.2021.105906.

[24] D. H. Santoso, S. J. Santosa, and A. B. Sekaranom, “Analysis and Trends Research Publications on Air Quality (PM 2.5) Management Strategies,” IOP Conf. Ser. Earth Environ. Sci., vol. 1339, no. 1, p. 012042, May 2024, doi: 10.1088/1755-1315/1339/1/012042.

[25] J. M. Fernández-González, C. Díaz-López, J. Martín-Pascual, and M. Zamorano, “Recycling Organic Fraction of Municipal Solid Waste: Systematic Literature Review and Bibliometric Analysis of Research Trends,” Sustainability, vol. 12, no. 11, p. 4798, June 2020, doi: 10.3390/su12114798.

[26] J. Jamalludin, M. Noer, R. Syahni, and Nofialdi, “Appengelolaan Kawasan Pertanian Sebagai Agrowisata: Systematic Literature Review,” J. Agribisnis, vol. 13, no. 1, pp. 60–70, May 2024, doi: 10.32520/agribisnis.v13i1.3203.

[27] Ž. Korde, S. Šuriņa, and K. Mārtinsone, “Research trends in drama therapy: a bibliometric analysis based on Scopus,” Front. Psychol., vol. 14, p. 1327656, Dec. 2023, doi: 10.3389/fpsyg.2023.1327656.

[28] T. K. Tran, “Urban Transportation Policy Planning Methodology: System Dynamics Approach.,” Model Simul Proc Annu Pittsburgh Conf, 1979, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85040155275&partnerID=40&md5=ab404b74a22805ba16d8c13cfd2d8a75

[29] B. A. Sloane and T. E. Dickinson, “Computer Modeling For The Lake Tahoe Basin: Impacts Of Extreme Land-Use Policies On Key Environmental Variables.,” J. Environ. Syst., vol. 9, no. 1, pp. 39–56, 1979, doi: 10.2190/A471-2K64-PPLX-XQHP.

[30] C. Cao, R. Debnath, and R. M. Alvarez, “Physics-based machine learning for predicting urban air pollution using decadal time series data,” Environ. Res. Commun., vol. 7, no. 5, 2025, doi: 10.1088/2515-7620/add795.

[31] M. Chen, P. Xu, Z. Liu, F. Liu, H. Zhang, and S. Miao, “Air pollution prediction based on optimized deep learning neural networks: PSO-LSTM,” Atmospheric Pollut. Res., vol. 16, no. 3, 2025, doi: 10.1016/j.apr.2025.102413.

[32] C. Erden, “Genetic algorithm-based hyperparameter optimization of deep learning models for PM2.5 time-series prediction,” Int. J. Environ. Sci. Technol., vol. 20, no. 3, pp. 2959–2982, 2023, doi: 10.1007/s13762-023-04763-6.

[33] T. Jia, G. Cheng, Z. Chen, J. Yang, and Y. Li, “Forecasting urban air pollution using multi-site spatiotemporal data fusion method (Geo-BiLSTMA),” Atmospheric Pollut. Res., vol. 15, no. 6, p. 102107, June 2024, doi: 10.1016/j.apr.2024.102107.

[34] K. Y. Reddy and K. V. S. G. M. Krishna, “Vehicular pollution prediction using HWTO-ANFIS model in urban areas of Hyderabad City,” Environ. Prog. Sustain. Energy, vol. 42, no. 4, 2023, doi: 10.1002/ep.14082.

[35] X. Lu et al., “Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era,” Engineering, vol. 6, no. 12, pp. 1423–1431, Dec. 2020, doi: 10.1016/j.eng.2020.03.014.

[36] Z. Idrees and L. Zheng, “Low cost air pollution monitoring systems: A review of protocols and enabling technologies,” J. Ind. Inf. Integr., vol. 17, p. 100123, Mar. 2020, doi: 10.1016/j.jii.2019.100123.

[37] F. Li and Y. Zhang, “Simulation of Development Strategies and Evaluation of Low-Carbon Development Level in Jiangsu Province under Carbon Peaking and Carbon Neutrality Goals,” Sustain. Switz., vol. 16, no. 4, 2024, doi: 10.3390/su16041597.

[38] H. M. Godínez Cárdenas, A. F. Miranda Pérez, A. Ramírez Portilla, and M. H. Lezama León, “Environmental Simulation Model Using System Dynamics to Estimate Air Pollution: A Case Study of Mexico City Metropolitan Area,” Sustain. Switz., vol. 16, no. 19, 2024, doi: 10.3390/su16198359.

[39] Y. Gu and X. Yu, “A life cycle cost analysis of different shore power incentive policies on both shore and ship sides based on system dynamics and a Chinese port case,” Environ. Sci. Pollut. Res., vol. 31, no. 20, pp. 29563–29583, 2024, doi: 10.1007/s11356-024-33009-2.

[40] P. Wang et al., “Air pollution governance in China and India: Comparison and implications,” Environ. Sci. Policy, vol. 142, pp. 112–120, Apr. 2023, doi: 10.1016/j.envsci.2023.02.006.

[41] Z. Karavas, V. Karayannis, and K. Moustakas, “Comparative study of air quality indices in the European Union towards adopting a common air quality index,” Energy Environ., vol. 32, no. 6, pp. 959–980, Sept. 2021, doi: 10.1177/0958305X20921846.

[42] X. Guo and X. Yang, “The Development of Wind Power under the Low-Carbon Constraints of Thermal Power in the Beijing-Tianjin-Hebei Region,” IEEE Access, vol. 8, pp. 44783–44797, 2020, doi: 10.1109/ACCESS.2020.2978282.

Downloads

Published

2023-12-30