Strategi Inovasi Produk dengan Identifikasi Kebutuhan Pengguna dan Tren Pasar Menggunakan Social Media Mining
DOI:
https://doi.org/10.31315/jurnaladmbisnis.v23i1.14319Abstract
Dalam pengembangan bisnis, perusahaan perlu melakukan strategi inovasi berkelanjutan. Inovasi ini salah satunya adalah pengembangan produk dengan melihat komentar, masukan, dan ulasan dari pengguna. Berbagai masukan dari pengguna dapat digali dengan berbagai macam cara, salah satunya adalah dari sosial media. Penggalian data melalui sosial media dapat secara alami menangkap ulasan dari pengguna. Data ulasan pengguna dari sosial media ini bisa didapatkan dari berbagai macam cara. Tujuan dari penelitian ini untuk mengekplorasi penggunaan social media mining dalam mengidentifikasi kebutuhan pengguna dan merumuskan strategi inovasi produk berbasis data tersebut. Pada penelitian ini digunakan salah satu contoh kasus pada smartphone Samsung Galaxy Z Flip dengan menggunakan data dari review dari Kaggle yang kemudian dianalisis menggunakan software Orange. Dari hasil pemodelan topik, didapatkan flip, screen, price, plastic, waterproof, thick, hand, folding, replacement dan glass merupakan topik yang paling sering dibahas oleh pengguna. Berbagai topik ini memiliki sentiment positif maupun negatif. Dari topik yang ditemukan ini dapat dijadikan bahan awal bagi perusahaan untuk melakukan strategi inovasi ke depannya agar sesuai dengan kebutuhan pengguna dan tren pasar saat ini.
References
Bi, J. W., Liu, Y., Fan, Z. P., & Zhang, J. (2019). Wisdom of crowds: Conducting importance-performance analysis (IPA) through online reviews. Tourism Management, 70, 460–478. https://doi.org/10.1016/j.tourman.2018.09.010
Choi, J., Oh, S., Yoon, J., Lee, J.-M., & Coh, B.-Y. (2020). Identification of time-evolving product opportunities via social media mining. Technological Forecasting and Social Change, 156. https://doi.org/10.1016/j.techfore.2020.120045
Ditania, H., Sulistyo Kusumo, D., & Hadikusuma, A. (2021, October). Identifikasi Kebutuhan Pengguna menggunakan Design Thinking yang digabungkan dengan Framework Scrum dalam Pembangunan Website “Kerjayuk” untuk Mahasiswa Universitas Telkom. E-Proceeding of Engineering.
He, W., Shen, J., Tian, X., Li, Y., Akula, V., Yan, G., & Tao, R. (2015). Gaining competitive intelligence from social media data Evidence from two largest retail chains in the world. Industrial Management and Data Systems, 115(9), 1622–1636. https://doi.org/10.1108/IMDS-03-2015-0098
Huang, C., Wang, Q., Yang, D., & Xu, F. (2018). Topic mining of tourist attractions based on a seasonal context aware LDA model. Intelligent Data Analysis, 22(2), 383–405. https://doi.org/10.3233/IDA-173364
Irawan, M. I., Wijayanto, R., Shahab, M. L., Hidayat, N., & Rukmi, A. M. (2020). Implementation of social media mining for decision making in product planning based on topic modeling and sentiment analysis. Journal of Physics: Conference Series, 1490(1). https://doi.org/10.1088/1742-6596/1490/1/012068
Jeong, B., Yoon, J., & Lee, J. M. (2019). Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management, 48, 280–290. https://doi.org/10.1016/j.ijinfomgt.2017.09.009
Jusuf, D. I. (2022). Product innovation: maintaining competitiveness in a competitive market. Jurnal Ekonomi, 11, 2022. http://ejournal.seaninstitute.or.id/index.php/Ekonomi
Kulkarni, S., & Rodd, S. F. (2020). Context Aware Recommendation Systems: A review of the state of the art techniques. In Computer Science Review (Vol. 37). Elsevier Ireland Ltd. https://doi.org/10.1016/j.cosrev.2020.100255
Lai, X., Huang, G., Zhao, Z., Lin, S., Zhang, S., Zhang, H., Chen, Q., & Mao, N. (2024). Social Listening for Product Design Requirement Analysis and Segmentation: A Graph Analysis Approach with User Comments Mining. Big Data, 12(6), 456–477. https://doi.org/10.1089/big.2022.0021
Lyu, Z., Hong, Z., Zhang, Y., & Wang, C. (2024). Product co-design with consumer participation in a service-oriented manufacturing system. International Journal of Production Research, 62(20), 7504–7524. https://doi.org/10.1080/00207543.2023.2247097
Nursubiyantoro, E., Ismianti, & Wibowo, A. W. A. (2020). Automation of drinking water treatment systems in rural area. Geographia Technica, 15(Special Issue), 113–122. https://doi.org/10.21163/GT_2020.151.28
Park, H., & Jeon, H. (2022). The Dynamics of Customer Satisfaction Dimension based on BERT, SHAP, and Kano Model. IFAC-PapersOnLine, 55(10), 2384–2389. https://doi.org/10.1016/j.ifacol.2022.10.065
Vijaya, A. P., Moeljadi, & Rahayu, M. (2021). The Effect of Product Innovation and Service Quality on Competitive Advantage Mediated by Company Image (Study at Pt. Toyota Astra Motor in Malang Raya). International Journal of Business, Economics and Law, 24(4).
Ramkumar, A., Kulkarni, P., Obaid, A. J., Abdulbaqi, A. S., & Al Yakin, A. (2023). Big Data Analytics and Its Application in E-Commerce. AIP Conference Proceedings, 2736(1). https://doi.org/10.1063/5.0170687
Sarmast, Z., Shokouhyar, S., Ghanadpour, S. H., & Shokoohyar, S. (2023). Unravelling the potential of social media data analysis to improve the warranty service operation. Industrial Management and Data Systems, 123(5), 1281–1309. https://doi.org/10.1108/IMDS-07-2022-0427
Sha, K., Li, Y., Dong, Y., & Zhang, N. (2024). Modelling the dynamics of customer requirements considering their lability and sensitivity in product development. Advanced Engineering Informatics, 59. https://doi.org/10.1016/j.aei.2023.102296
Ulrich, K. T. ., & Eppinger, S. D. . (2016). Product design and development. McGraw-Hill Education.
Wedel, I., Palk, M., & Voß, S. (2022). A Bilingual Comparison of Sentiment and Topics for a Product Event on Twitter. Information Systems Frontiers, 24(5), 1635–1646. https://doi.org/10.1007/s10796-021-10169-x
Willman, L. T., Afifah, T., Banurea, M. N., & Ismianti, I. (2023). ECABLE (External Catheter Flexible) innovation of catheter external products for women. OPSI, 16(2), 200. https://doi.org/10.31315/opsi.v16i2.11435
Yangzom, T., & Ahuja, L. (2023). Uses of Big Data to Understand Consumers’ Buying Behavior. 2023 4th International Conference on Electronics and Sustainable Communication Systems, ICESC 2023 - Proceedings, 819–823. https://doi.org/10.1109/ICESC57686.2023.10193596